copied
Readme
Files and versions
2.5 KiB
Video-Text Retrieval Embedding with Frozen In Time
author: Jinling Xu
Description
This operator extracts features for video or text with Frozen In Time which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
Code Example
Load a video from path './demo_video.mp4' to generate a video embedding.
- Encode video (default):
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()

Read the text 'kids feeding and playing with the horse' to generate a text embedding.
- Encode text:
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu')) \
.output('text', 'vec')
)
DataCollection(p('kids feeding and playing with the horse')).show()

Factory Constructor
Create the operator via the following factory method
frozen_in_time(model_name, modality, weight_path)
Parameters:
model_name: str
The model name of frozen in time. Supported model names:
- frozen_in_time_base_16_244
modality: str
Which modality(video or text) is used to generate the embedding.
weight_path: str
pretrained model weights path.
Interface
An video-text embedding operator takes a list of Towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.Image] or str
The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
2.5 KiB
Video-Text Retrieval Embedding with Frozen In Time
author: Jinling Xu
Description
This operator extracts features for video or text with Frozen In Time which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
Code Example
Load a video from path './demo_video.mp4' to generate a video embedding.
- Encode video (default):
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()

Read the text 'kids feeding and playing with the horse' to generate a text embedding.
- Encode text:
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu')) \
.output('text', 'vec')
)
DataCollection(p('kids feeding and playing with the horse')).show()

Factory Constructor
Create the operator via the following factory method
frozen_in_time(model_name, modality, weight_path)
Parameters:
model_name: str
The model name of frozen in time. Supported model names:
- frozen_in_time_base_16_244
modality: str
Which modality(video or text) is used to generate the embedding.
weight_path: str
pretrained model weights path.
Interface
An video-text embedding operator takes a list of Towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.Image] or str
The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.