milvus-client
              
                 
                
            
          copied
				 3 changed files with 96 additions and 0 deletions
			
			
		| @ -0,0 +1,5 @@ | |||
| from .milvus_client import MilvusClientls | |||
| 
 | |||
| 
 | |||
| def milvus_client(*args, **kwargs): | |||
|     return MilvusClient(*args, **kwargs) | |||
| @ -0,0 +1,90 @@ | |||
| from pymilvus import connections, Collection | |||
| from towhee.operator import PyOperator | |||
| import uuid | |||
| 
 | |||
| 
 | |||
| class Milvus(PyOperator): | |||
|     """ | |||
|     Search for embedding vectors in Milvus. Note that the Milvus collection has data before searching, | |||
| 
 | |||
|     Args: | |||
|         collection (`str`): | |||
|             The collection name. | |||
|         kwargs | |||
|             The kwargs with collection.search, refer to https://milvus.io/docs/v2.0.x/search.md#Prepare-search-parameters. | |||
|             And the `anns_field` defaults to the vector field name, `limit` defaults to 10, and `metric_type` in `param` defaults to 'L2' | |||
|             if there has no index(FLAT), and for default index `param`: | |||
|                 IVF_FLAT: {"params": {"nprobe": 10}}, | |||
|                 IVF_SQ8: {"params": {"nprobe": 10}}, | |||
|                 IVF_PQ: {"params": {"nprobe": 10}}, | |||
|                 HNSW: {"params": {"ef": 10}}, | |||
|                 IVF_HNSW: {"params": {"nprobe": 10, "ef": 10}}, | |||
|                 RHNSW_FLAT: {"params": {"ef": 10}}, | |||
|                 RHNSW_SQ: {"params": {"ef": 10}}, | |||
|                 RHNSW_PQ: {"params": {"ef": 10}}, | |||
|                 ANNOY: {"params": {"search_k": 10}}. | |||
|     """ | |||
| 
 | |||
|     def __init__(self, host: str = 'localhost', port: int = 19530, collection_name: str = None, **kwargs): | |||
|         """ | |||
|         Get an existing collection. | |||
|         """ | |||
|         self._host = host | |||
|         self._port = port | |||
|         self._collection_name = collection_name | |||
|         self._connect_name = uuid.uuid4().hex | |||
|         connections.connect(alias=self._connect_name, host=self._host, port=self._port) | |||
|         self._collection = Collection(self._collection_name, using=self._connect_name) | |||
| 
 | |||
|         self.kwargs = kwargs | |||
|         if 'anns_field' not in self.kwargs: | |||
|             fields_schema = self._collection.schema.fields | |||
|             for schema in fields_schema: | |||
|                 if schema.dtype in (101, 100): | |||
|                     self.kwargs['anns_field'] = schema.name | |||
| 
 | |||
|         if 'limit' not in self.kwargs: | |||
|             self.kwargs['limit'] = 10 | |||
| 
 | |||
|         index_params = { | |||
|             'IVF_FLAT': {'params': {'nprobe': 10}}, | |||
|             'IVF_SQ8': {'params': {'nprobe': 10}}, | |||
|             'IVF_PQ': {'params': {'nprobe': 10}}, | |||
|             'HNSW': {'params': {'ef': 10}}, | |||
|             'RHNSW_FLAT': {'params': {'ef': 10}}, | |||
|             'RHNSW_SQ': {'params': {'ef': 10}}, | |||
|             'RHNSW_PQ': {'params': {'ef': 10}}, | |||
|             'IVF_HNSW': {'params': {'nprobe': 10, 'ef': 10}}, | |||
|             'ANNOY': {'params': {'search_k': 10}} | |||
|         } | |||
| 
 | |||
|         if 'param' not in self.kwargs: | |||
|             if len(self._collection.indexes) != 0: | |||
|                 index_type = self._collection.indexes[0].params['index_type'] | |||
|                 self.kwargs['param'] = index_params[index_type] | |||
|             else: | |||
|                 self.kwargs['param'] = index_params['IVF_FLAT'] | |||
|             if 'metric_type' in self.kwargs: | |||
|                 self.kwargs['param']['metric_type'] = self.kwargs['metric_type'] | |||
|             else: | |||
|                 self.kwargs['param']['metric_type'] = 'L2' | |||
| 
 | |||
|     def __call__(self, query: list): | |||
|         milvus_result = self._collection.search( | |||
|             data=[query], | |||
|             **self.kwargs | |||
|         ) | |||
| 
 | |||
|         result = [] | |||
|         for re in milvus_result: | |||
|             row = [] | |||
|             for hit in re: | |||
|                 row.extend([hit.id, hit.score]) | |||
|                 if 'output_fields' in self.kwargs: | |||
|                     for k in self.kwargs['output_fields']: | |||
|                         row.append(hit.entity._row_data[k]) | |||
|                 result.append(row) | |||
|         return result | |||
| 
 | |||
|     def __del__(self): | |||
|         connections.disconnect(self._connect_name) | |||
| @ -0,0 +1 @@ | |||
| pymilvus | |||
					Loading…
					
					
				
		Reference in new issue
	
	