osschat-milvus
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
Updated 6 months ago
ann-search
ANN Search Operator: MilvusClient
author: junjie.jiangjjj
Desription
Search embedding in Milvus, please make sure you have inserted data to Milvus Collection.
Code Example
Please make sure you have inserted data into Milvus and load the collection to memory.
from towhee import pipe, ops, DataCollection
p = pipe.input('collection_name', 'text') \
.map('text', 'vec', ops.sentence_embedding.transformers(model_name='all-MiniLM-L12-v2')) \
.map(('collection_name', 'vec'), 'rows', ops.ann_search.osschat_milvus(host='127.0.0.1', port='19530', **{'output_fields': ['text']})) \
.map('rows', ('id', 'score', 'text'), lambda x: (x[0], x[1], x[2])) \
.output('id', 'score', 'text')
DataCollection(p('test_collection', 'cat')).show()
# result:
from towhee import pipe, ops
# search additional info url:
from towhee import pipe, ops, DataCollection
p = pipe.input('collection_name', 'text') \
.map('text', 'vec', ops.sentence_embedding.transformers(model_name='all-MiniLM-L12-v2')) \
.map(('collection_name', 'vec'), 'rows', ops.ann_search.osschat_milvus(host='127.0.0.1', port='19530', **{'output_fields': ['text']})) \
.output('rows')
DataCollection(p('test_collection', 'cat')).show()
Factory Constructor
Create the operator via the following factory method:
ann_search.milvus_client(host='127.0.0.1', port='19530')
More Resources
- Tokopedia Achieved a 10x Smarter Search with Milvus: Indonesia's largest e-commerce platform, Tokopedia's quest for superior search functionality, led them to Milvus, a game-changer in semantic search.
- Spring AI and Milvus: Using Milvus as a Spring AI Vector Store - Zilliz blog: A comprehensive guide on how to use Milvus as a Spring AI vector store
- ArXiv Papers Vector Similarity Search with Milvus 2.1 - Zilliz blog: Run semantic search queries on ~640K papers in <50ms using Dask, SBERT SPECTRE, and Milvus Vector database
- Unlock Advanced Recommendation Engines with Milvus' New Range Search - Zilliz blog: Exploring Milvusâs newly released range search feature, how it differs from the traditional KNN search, and when to use it.
- Milvus 2.4 Unveils Game-Changing Features for Enhanced Vector Search - Zilliz Newsroom; Milvus 2.4 Unveils Game-Changing Features for Enhanced Vector Search: Milvus 2.4 Unveils Game-Changing Features for Enhanced Vector Search
| 9 Commits | ||
---|---|---|---|
|
1.1 KiB
|
2 years ago | |
|
2.9 KiB
|
6 months ago | |
|
120 B
|
2 years ago | |
|
4.6 KiB
|
1 year ago | |
|
9 B
|
2 years ago |