logo
Browse Source

Update readme

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 2 years ago
parent
commit
e7b5f20a68
  1. 13
      README.md

13
README.md

@ -21,7 +21,7 @@ Generate embeddings for the audio "test.wav".
*Write a same pipeline with explicit inputs/outputs name specifications:* *Write a same pipeline with explicit inputs/outputs name specifications:*
- option 1 (towhee>=0.9.0):
- **option 1 (towhee>=0.9.0):**
```python ```python
from towhee.dc2 import pipe, ops, DataCollection from towhee.dc2 import pipe, ops, DataCollection
@ -36,7 +36,7 @@ DataCollection(p('test.wav')).show()
``` ```
<img src="./result.png" width="800px"/> <img src="./result.png" width="800px"/>
- option 2:
- **option 2:**
```python ```python
import towhee import towhee
@ -55,18 +55,17 @@ import towhee
Create the operator via the following factory method Create the operator via the following factory method
***audio_embedding.nnfp(params=None, model_path=None, framework='pytorch')***
***audio_embedding.nnfp(model_name='nnfp_default', model_path=None, framework='pytorch')***
**Parameters:** **Parameters:**
*params: dict*
*model_name: str*
A dictionary of model parameters. If None, it will use default parameters to create model.
Model name to create nnfp model with different parameters.
*model_path: str* *model_path: str*
The path to model. If None, it will load default model weights. The path to model. If None, it will load default model weights.
When the path ends with '.onnx', the operator will use onnx inference.
*framework: str* *framework: str*
@ -88,7 +87,6 @@ An audio embedding operator generates vectors in numpy.ndarray given towhee audi
Input audio data is a list of towhee audio frames. Input audio data is a list of towhee audio frames.
The audio input should be at least 1s. The audio input should be at least 1s.
**Returns**: **Returns**:
*numpy.ndarray* *numpy.ndarray*
@ -96,6 +94,7 @@ The audio input should be at least 1s.
Audio embeddings in shape (num_clips, 128). Audio embeddings in shape (num_clips, 128).
Each embedding stands for features of an audio clip with length of 1s. Each embedding stands for features of an audio clip with length of 1s.
<br />
***save_model(format='pytorch', path='default')*** ***save_model(format='pytorch', path='default')***

Loading…
Cancel
Save