logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 4 months ago

code-search

Code & Text Embedding with CodeBert

author: Jael Gu


Description

A code search operator takes a text string of programming language or natural language as an input and returns an embedding vector in ndarray which captures the input's core semantic elements. This operator is implemented with pre-trained CodeBert or GraphCodeBert models from Huggingface Transformers.


Code Example

Use the pre-trained model "huggingface/CodeBERTa-small-v1" to generate text embeddings for given text description "return max value" and code "def max(a,b): if a>b: return a else return b".

Write a pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

p = (
    pipe.input('text')
        .map('text', 'embedding', ops.code_search.codebert(model_name='huggingface/CodeBERTa-small-v1'))
        .output('text', 'embedding')
)

DataCollection(p('find max value')).show()
DataCollection(p('def max(a,b): if a>b: return a else return b')).show()


Factory Constructor

Create the operator via the following factory method:

code_search.codebert(model_name="huggingface/CodeBERTa-small-v1")

Parameters:

model_name: str

The model name in string. The default model name is "huggingface/CodeBERTa-small-v1".

device: str

The device to run model inference. The default value is None, which enables GPU if cuda is available.

Supported model names:

  • huggingface/CodeBERTa-small-v1
  • microsoft/codebert-base
  • microsoft/codebert-base-mlm
  • mrm8488/codebert-base-finetuned-stackoverflow-ner
  • microsoft/graphcodebert-base


Interface

The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name. and then return an embedding in ndarray.

call(txt)

Parameters:

txt: str

​ The text string in programming language or natural language.

Returns:

numpy.ndarray

​ The text embedding generated by model, in shape of (dim,).

save_model(format="pytorch", path="default")

Save model to local with specified format.

Parameters:

format: str

​ The format of saved model, defaults to "pytorch".

format: path

​ The path where model is saved to. By default, it will save model to the operator directory.

supported_model_names(format=None)

Get a list of all supported model names or supported model names for specified model format.

Parameters:

format: str

​ The model format such as "pytorch", "torchscript". The default value is None, which will return all supported model names.

More Resources

Jael Gu 947c6d7d15 Add more resources 17 Commits
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 2 years ago
file-icon README.md
4.2 KiB
download-icon
Add more resources 4 months ago
file-icon __init__.py
680 B
download-icon
Add files 2 years ago
file-icon codebert.py
7.1 KiB
download-icon
Remove incorrect token 2 years ago
file-icon requirements.txt
61 B
download-icon
Add files 2 years ago
file-icon result.png
14 KiB
download-icon
Update 2 years ago