logo
Browse Source

Update

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 2 years ago
parent
commit
d126f00ebf
  1. 24
      README.md
  2. BIN
      result.png

24
README.md

@ -19,27 +19,19 @@ Use the pre-trained model "huggingface/CodeBERTa-small-v1"
to generate text embeddings for given
text description "return max value" and code "def max(a,b): if a>b: return a else return b".
*Write the pipeline*:
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
from towhee.dc2 import pipe, ops, DataCollection
(
towhee.dc(['find max value', 'def max(a,b): if a>b: return a else return b'])
.code_search.codebert(model_name='huggingface/CodeBERTa-small-v1')
p = (
pipe.input('text')
.map('text', 'embedding', ops.code_search.codebert(model_name='huggingface/CodeBERTa-small-v1'))
.output('text', 'embedding')
)
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
(
towhee.dc['text'](['return max value', 'def max(a,b): if a>b: return a else return b'])
.code_search.codebert['text', 'embedding']()
.show()
)
DataCollection(p('find max value')).show()
DataCollection(p('def max(a,b): if a>b: return a else return b')).show()
```
<img src="./result.png" width="800px"/>

BIN
result.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Loading…
Cancel
Save