copied
Readme
Files and versions
Updated 3 years ago
face-embedding
Inception-ResNet v1 Face Embedding Operator
author: David Wang
Description
This operator extracts embedding vector from facial image using Inception-ResNet. The implementation is an adaptation from timesler/facenet-pytorch.
Code Example
Extract face image embedding from './img.png'.
Write the pipeline in simplified style:
import towhee
towhee.glob('./img.png') \
.image_decode.cv2() \
.face_embedding.inceptionresnetv1() \
.tolist()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./img.png') \
.image_decode.cv2['path', 'img']() \
.face_embedding.inceptionresnetv1['img', 'vec']() \
.select['img','vec']() \
.show()

Factory Constructor
Create the operator via the following factory method:
face_embedding.inceptionresnetv1(image_size = 160)
Parameters:
image_size: int
Scaled input image size to extract embedding. The higher resolution would generate the more discriminative feature but cost more time to calculate.
supported types: int
, default is 160.
Interface
A face embedding operator takes a face image as input. It extracts the embedding in ndarray.
Parameters:
img: towhee.types.Image (a sub-class of numpy.ndarray)
The input image.
Returns: numpy.ndarray
The extracted image embedding.
| 5 Commits | ||
---|---|---|---|
|
12 KiB
|
3 years ago | |
|
1.1 KiB
|
3 years ago | |
|
1.6 KiB
|
3 years ago | |
|
885 B
|
3 years ago | |
|
2.1 KiB
|
3 years ago | |
|
89 B
|
3 years ago | |
|
110 KiB
|
3 years ago |