mobilefacenet
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
76 lines
2.5 KiB
76 lines
2.5 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# adapted from https://github.com/cunjian/pytorch_face_landmark
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
from typing import NamedTuple
|
||
|
from pathlib import Path
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from torchvision import transforms
|
||
|
|
||
|
from towhee.operator import NNOperator
|
||
|
from towhee.types.image_utils import to_pil
|
||
|
from towhee._types import Image
|
||
|
|
||
|
#import mobilefacenet
|
||
|
|
||
|
@register(output_schema=['landmark'])
|
||
|
class Mobilefacenet(NNOperator):
|
||
|
"""
|
||
|
Mobilefacenet
|
||
|
"""
|
||
|
|
||
|
def __init__(self, framework: str = 'pytorch', pretrained = True):
|
||
|
super().__init__(framework=framework)
|
||
|
sys.path.append(str(Path(__file__).parent))
|
||
|
from mobilefacenet_impl import MobileFaceNet
|
||
|
self.model = MobileFaceNet([112, 112], 136)
|
||
|
if pretrained == True:
|
||
|
map_location = 'cpu'
|
||
|
checkpoint = torch.load(
|
||
|
os.path.dirname(__file__) +'/mobilefacenet_model_best.pth', map_location=map_location)
|
||
|
self.model.load_state_dict(checkpoint['state_dict'])
|
||
|
|
||
|
normalize = transforms.Normalize(
|
||
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||
|
self.tfms = transforms.Compose([transforms.Scale(112),
|
||
|
transforms.ToTensor(),
|
||
|
normalize])
|
||
|
|
||
|
@arg(1, to_image_color('RGB') )
|
||
|
def __call__(self, image: Image):
|
||
|
image = to_pil(image)
|
||
|
h, w = image.size
|
||
|
tensor = self._preprocess(image)
|
||
|
if len(tensor.shape) == 3:
|
||
|
tensor = torch.unsqueeze(tensor, 0)
|
||
|
self.model.eval()
|
||
|
landmark = self.model(tensor)[0][0]
|
||
|
landmark = landmark.reshape(-1, 2)
|
||
|
landmark[:, 0] = landmark[:, 0] * w
|
||
|
landmark[:, 1] = landmark[:, 1] * h
|
||
|
return np.asarray(landmark.cpu().detach(), dtype=np.int32)
|
||
|
|
||
|
def _preprocess(self, image):
|
||
|
return self.tfms(image)
|
||
|
|
||
|
def _postprocess(self, landmark):
|
||
|
pass
|
||
|
|
||
|
def train(self):
|
||
|
pass
|