Browse Source
update readme format.
Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb
3 years ago
1 changed files with
23 additions and
5 deletions
README.md
@ -1,17 +1,25 @@
# MobileFaceNet Face Landmark Detecter
*authors : David Wang*
*author: David Wang*
## Desription
< br / >
## Description
[MobileFaceNets ](https://arxiv.org/pdf/1804.07573 ) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from [cuijian/pytorch_face_landmark ](https://github.com/cunjian/pytorch_face_landmark ).
< br / >
## Code Example
Extract facial landmarks from './img1.jpg'.
*Write the pipeline in simplified style* :
*Write the pipeline in simplified style:*
```python
import towhee
@ -31,12 +39,17 @@ import towhee
towhee.glob['path']('./img1.jpg') \
.image_decode.cv2['path', 'img']() \
.face_landmark_detection.mobilefacenet['img', 'landmark']() \
.select('img','landmark' ) \
.select['img','landmark']( ) \
.show()
```
< img src = "https://towhee.io/face-landmark-detection/mobilefacenet/raw/branch/main/result.png" alt = "result1" style = "height:20px;" / >
< br / >
## Factory Constructor
Create the operator via the following factory method
@ -51,13 +64,18 @@ Create the operator via the following factory method
supported types: `bool` , default is True, using pretrained weights.
< br / >
## Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
**Parameters:**
** *img***: *towhee.types.Image (a sub-class of numpy.ndarray)*
** *img: *** *towhee.types.Image (a sub-class of numpy.ndarray)*
The input image.