capdec
copied
3 changed files with 484 additions and 10 deletions
@ -1,2 +1,84 @@ |
|||||
# capdec |
|
||||
|
# Image Captioning with CapDec |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator generates the caption with [CapDec](https://arxiv.org/abs/2211.00575) which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from [DavidHuji/CapDec](https://github.com/DavidHuji/CapDec). |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './image.jpg' to generate the caption. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./image.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_captioning.capdec(model_name='capdec_noise_0') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./cap.png" alt="result1" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./image.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_captioning.capdec['img', 'text'](model_name='capdec_noise_0') \ |
||||
|
.select['img', 'text']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./tabular.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***capdec(model_name)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name:*** *str* |
||||
|
|
||||
|
The model name of CapDec. Supported model names: |
||||
|
- capdec_noise_0 |
||||
|
- capdec_noise_01 |
||||
|
- capdec_noise_001 |
||||
|
- capdec_noise_0001 |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image captioning operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
||||
|
|
||||
|
The image to generate caption. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *str* |
||||
|
|
||||
|
The caption generated by model. |
||||
|
|
||||
|
@ -0,0 +1,365 @@ |
|||||
|
import os |
||||
|
from torch import nn |
||||
|
import numpy as np |
||||
|
import torch |
||||
|
import torch.nn.functional as nnf |
||||
|
from typing import Tuple, List, Union, Optional |
||||
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
||||
|
from tqdm import tqdm, trange |
||||
|
|
||||
|
class ClipCaptionModel(nn.Module): |
||||
|
|
||||
|
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: |
||||
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
||||
|
|
||||
|
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None, |
||||
|
labels: Optional[torch.Tensor] = None): |
||||
|
embedding_text = self.gpt.transformer.wte(tokens) |
||||
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
||||
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
||||
|
if labels is not None: |
||||
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
||||
|
labels = torch.cat((dummy_token, tokens), dim=1) |
||||
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
||||
|
return out |
||||
|
|
||||
|
def __init__(self): |
||||
|
super(ClipCaptionModel, self).__init__() |
||||
|
self.prefix_length = 40 |
||||
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
||||
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
||||
|
self.clip_project = TransformerMapper(640, self.gpt_embedding_size, 40, 40, 8) |
||||
|
|
||||
|
class MLP(nn.Module): |
||||
|
|
||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
||||
|
return self.model(x) |
||||
|
|
||||
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
||||
|
super(MLP, self).__init__() |
||||
|
layers = [] |
||||
|
for i in range(len(sizes) -1): |
||||
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
||||
|
if i < len(sizes) - 2: |
||||
|
layers.append(act()) |
||||
|
self.model = nn.Sequential(*layers) |
||||
|
|
||||
|
class MlpTransformer(nn.Module): |
||||
|
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): |
||||
|
super().__init__() |
||||
|
out_d = out_d if out_d is not None else in_dim |
||||
|
self.fc1 = nn.Linear(in_dim, h_dim) |
||||
|
self.act = act |
||||
|
self.fc2 = nn.Linear(h_dim, out_d) |
||||
|
self.dropout = nn.Dropout(dropout) |
||||
|
|
||||
|
def forward(self, x): |
||||
|
x = self.fc1(x) |
||||
|
x = self.act(x) |
||||
|
x = self.dropout(x) |
||||
|
x = self.fc2(x) |
||||
|
x = self.dropout(x) |
||||
|
return x |
||||
|
|
||||
|
class MultiHeadAttention(nn.Module): |
||||
|
|
||||
|
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): |
||||
|
super().__init__() |
||||
|
self.num_heads = num_heads |
||||
|
head_dim = dim_self // num_heads |
||||
|
self.scale = head_dim ** -0.5 |
||||
|
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) |
||||
|
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) |
||||
|
self.project = nn.Linear(dim_self, dim_self) |
||||
|
self.dropout = nn.Dropout(dropout) |
||||
|
|
||||
|
def forward(self, x, y=None, mask=None): |
||||
|
y = y if y is not None else x |
||||
|
b, n, c = x.shape |
||||
|
_, m, d = y.shape |
||||
|
# b n h dh |
||||
|
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) |
||||
|
# b m 2 h dh |
||||
|
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) |
||||
|
keys, values = keys_values[:, :, 0], keys_values[:, :, 1] |
||||
|
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale |
||||
|
if mask is not None: |
||||
|
if mask.dim() == 2: |
||||
|
mask = mask.unsqueeze(1) |
||||
|
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) |
||||
|
attention = attention.softmax(dim=2) |
||||
|
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) |
||||
|
out = self.project(out) |
||||
|
return out, attention |
||||
|
|
||||
|
|
||||
|
class TransformerLayer(nn.Module): |
||||
|
|
||||
|
def forward_with_attention(self, x, y=None, mask=None): |
||||
|
x_, attention = self.attn(self.norm1(x), y, mask) |
||||
|
x = x + x_ |
||||
|
x = x + self.mlp(self.norm2(x)) |
||||
|
return x, attention |
||||
|
|
||||
|
def forward(self, x, y=None, mask=None): |
||||
|
x = x + self.attn(self.norm1(x), y, mask)[0] |
||||
|
x = x + self.mlp(self.norm2(x)) |
||||
|
return x |
||||
|
|
||||
|
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, |
||||
|
norm_layer: nn.Module = nn.LayerNorm): |
||||
|
super().__init__() |
||||
|
self.norm1 = norm_layer(dim_self) |
||||
|
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) |
||||
|
self.norm2 = norm_layer(dim_self) |
||||
|
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) |
||||
|
|
||||
|
|
||||
|
class Transformer(nn.Module): |
||||
|
|
||||
|
def forward_with_attention(self, x, y=None, mask=None): |
||||
|
attentions = [] |
||||
|
for layer in self.layers: |
||||
|
x, att = layer.forward_with_attention(x, y, mask) |
||||
|
attentions.append(att) |
||||
|
return x, attentions |
||||
|
|
||||
|
def forward(self, x, y=None, mask=None): |
||||
|
for i, layer in enumerate(self.layers): |
||||
|
if i % 2 == 0 and self.enc_dec: # cross |
||||
|
x = layer(x, y) |
||||
|
elif self.enc_dec: # self |
||||
|
x = layer(x, x, mask) |
||||
|
else: # self or cross |
||||
|
x = layer(x, y, mask) |
||||
|
return x |
||||
|
|
||||
|
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, |
||||
|
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False): |
||||
|
super(Transformer, self).__init__() |
||||
|
dim_ref = dim_ref if dim_ref is not None else dim_self |
||||
|
self.enc_dec = enc_dec |
||||
|
if enc_dec: |
||||
|
num_layers = num_layers * 2 |
||||
|
layers = [] |
||||
|
for i in range(num_layers): |
||||
|
if i % 2 == 0 and enc_dec: # cross |
||||
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
||||
|
elif enc_dec: # self |
||||
|
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
||||
|
else: # self or cross |
||||
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
||||
|
self.layers = nn.ModuleList(layers) |
||||
|
|
||||
|
|
||||
|
class TransformerMapper(nn.Module): |
||||
|
|
||||
|
def forward(self, x): |
||||
|
x = self.linear(x).view(x.shape[0], self.clip_length, -1) |
||||
|
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) |
||||
|
prefix = torch.cat((x, prefix), dim=1) |
||||
|
out = self.transformer(prefix)[:, self.clip_length:] |
||||
|
return out |
||||
|
|
||||
|
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8): |
||||
|
super(TransformerMapper, self).__init__() |
||||
|
self.clip_length = clip_length |
||||
|
self.transformer = Transformer(dim_embedding, 8, num_layers) |
||||
|
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding) |
||||
|
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True) |
||||
|
|
||||
|
|
||||
|
class ClipCaptionPrefix(ClipCaptionModel): |
||||
|
|
||||
|
def parameters(self, recurse: bool = True): |
||||
|
return self.clip_project.parameters() |
||||
|
|
||||
|
def train(self, mode: bool = True): |
||||
|
super(ClipCaptionPrefix, self).train(mode) |
||||
|
self.gpt.eval() |
||||
|
return self |
||||
|
|
||||
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
||||
|
entry_length=67, temperature=1., stop_token: str = '.'): |
||||
|
|
||||
|
model.eval() |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
tokens = None |
||||
|
scores = None |
||||
|
device = next(model.parameters()).device |
||||
|
seq_lengths = torch.ones(beam_size, device=device) |
||||
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
||||
|
with torch.no_grad(): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
for i in range(entry_length): |
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
logits = logits.softmax(-1).log() |
||||
|
if scores is None: |
||||
|
scores, next_tokens = logits.topk(beam_size, -1) |
||||
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
||||
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
||||
|
if tokens is None: |
||||
|
tokens = next_tokens |
||||
|
else: |
||||
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
else: |
||||
|
logits[is_stopped] = -float(np.inf) |
||||
|
logits[is_stopped, 0] = 0 |
||||
|
scores_sum = scores[:, None] + logits |
||||
|
seq_lengths[~is_stopped] += 1 |
||||
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
||||
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
||||
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
||||
|
seq_lengths = seq_lengths[next_tokens_source] |
||||
|
next_tokens = next_tokens % scores_sum.shape[1] |
||||
|
next_tokens = next_tokens.unsqueeze(1) |
||||
|
tokens = tokens[next_tokens_source] |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
generated = generated[next_tokens_source] |
||||
|
scores = scores_sum_average * seq_lengths |
||||
|
is_stopped = is_stopped[next_tokens_source] |
||||
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
||||
|
if is_stopped.all(): |
||||
|
break |
||||
|
scores = scores / seq_lengths |
||||
|
output_list = tokens.cpu().numpy() |
||||
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
||||
|
order = scores.argsort(descending=True) |
||||
|
output_texts = [output_texts[i] for i in order] |
||||
|
return output_texts |
||||
|
|
||||
|
|
||||
|
def generate2( |
||||
|
model, |
||||
|
tokenizer, |
||||
|
tokens=None, |
||||
|
prompt=None, |
||||
|
embed=None, |
||||
|
entry_count=1, |
||||
|
entry_length=67, # maximum number of words |
||||
|
top_p=0.8, |
||||
|
temperature=1., |
||||
|
stop_token: str = '.', |
||||
|
): |
||||
|
model.eval() |
||||
|
generated_num = 0 |
||||
|
generated_list = [] |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
filter_value = -float("Inf") |
||||
|
device = next(model.parameters()).device |
||||
|
|
||||
|
with torch.no_grad(): |
||||
|
|
||||
|
for entry_idx in trange(entry_count): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
|
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
|
||||
|
for i in range(entry_length): |
||||
|
|
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
||||
|
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
||||
|
sorted_indices_to_remove = cumulative_probs > top_p |
||||
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ |
||||
|
..., :-1 |
||||
|
].clone() |
||||
|
sorted_indices_to_remove[..., 0] = 0 |
||||
|
|
||||
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
||||
|
logits[:, indices_to_remove] = filter_value |
||||
|
next_token = torch.argmax(logits, -1).unsqueeze(0) |
||||
|
next_token_embed = model.gpt.transformer.wte(next_token) |
||||
|
if tokens is None: |
||||
|
tokens = next_token |
||||
|
else: |
||||
|
tokens = torch.cat((tokens, next_token), dim=1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
if stop_token_index == next_token.item(): |
||||
|
break |
||||
|
|
||||
|
output_list = list(tokens.squeeze().cpu().numpy()) |
||||
|
output_text = tokenizer.decode(output_list) |
||||
|
generated_list.append(output_text) |
||||
|
|
||||
|
return generated_list[0] |
||||
|
|
||||
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
||||
|
entry_length=67, temperature=1., stop_token: str = '.'): |
||||
|
|
||||
|
model.eval() |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
tokens = None |
||||
|
scores = None |
||||
|
device = next(model.parameters()).device |
||||
|
seq_lengths = torch.ones(beam_size, device=device) |
||||
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
||||
|
with torch.no_grad(): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
for i in range(entry_length): |
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
logits = logits.softmax(-1).log() |
||||
|
if scores is None: |
||||
|
scores, next_tokens = logits.topk(beam_size, -1) |
||||
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
||||
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
||||
|
if tokens is None: |
||||
|
tokens = next_tokens |
||||
|
else: |
||||
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
else: |
||||
|
logits[is_stopped] = -float(np.inf) |
||||
|
logits[is_stopped, 0] = 0 |
||||
|
scores_sum = scores[:, None] + logits |
||||
|
seq_lengths[~is_stopped] += 1 |
||||
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
||||
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
||||
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
||||
|
seq_lengths = seq_lengths[next_tokens_source] |
||||
|
next_tokens = next_tokens % scores_sum.shape[1] |
||||
|
next_tokens = next_tokens.unsqueeze(1) |
||||
|
tokens = tokens[next_tokens_source] |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
generated = generated[next_tokens_source] |
||||
|
scores = scores_sum_average * seq_lengths |
||||
|
is_stopped = is_stopped[next_tokens_source] |
||||
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
||||
|
if is_stopped.all(): |
||||
|
break |
||||
|
scores = scores / seq_lengths |
||||
|
output_list = tokens.cpu().numpy() |
||||
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
||||
|
order = scores.argsort(descending=True) |
||||
|
output_texts = [output_texts[i] for i in order] |
||||
|
return output_texts |
||||
|
|
||||
|
pretrained_model_variance = "0.1" #@param ["0.0", "0.0001", "0.001", "0.015", "0.1", "2.5"] |
Loading…
Reference in new issue