clipcap
copied
wxywb
2 years ago
8 changed files with 489 additions and 1 deletions
@ -1,2 +1,85 @@ |
|||||
# clipcap |
|
||||
|
# Image Captioning with BLIP |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator generates the caption with [BLIP](https://arxiv.org/abs/2201.12086) which describes the content of the given image. This is an adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP). |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './animals.jpg' to generate the caption. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./animals.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_captioning.blip(model_name='blip_base') \ |
||||
|
.select() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./cap.png" alt="result1" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./animals.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_captioning.blip['img', 'text'](model_name='blip_base') \ |
||||
|
.select['img', 'text']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./tabular.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***blip(model_name)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name:*** *str* |
||||
|
|
||||
|
The model name of BLIP. Supported model names: |
||||
|
- blip_base |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
||||
|
|
||||
|
The image to generate embedding. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *str* |
||||
|
|
||||
|
The caption generated by model. |
||||
|
@ -0,0 +1,18 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .clipcap import ClipCap |
||||
|
|
||||
|
def clipcap(model_name: str): |
||||
|
return ClipCap(model_name) |
@ -0,0 +1,79 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import os |
||||
|
import torch |
||||
|
from pathlib import Path |
||||
|
from torchvision import transforms |
||||
|
|
||||
|
from towhee.types.image_utils import to_pil |
||||
|
from towhee.operator.base import NNOperator, OperatorFlag |
||||
|
from towhee import register |
||||
|
from towhee.models import clip |
||||
|
|
||||
|
class ClipCap(NNOperator): |
||||
|
""" |
||||
|
ClipCap image captioning operator |
||||
|
""" |
||||
|
def __init__(self, model_name: str): |
||||
|
super().__init__(): |
||||
|
sys.path.append(str(Path(__file__).parent)) |
||||
|
from models.clipcap import ClipCaptionModel |
||||
|
config = self._configs()[model_name] |
||||
|
|
||||
|
self.clip_tfms = self.tfms = transforms.Compose([ |
||||
|
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), |
||||
|
transforms.CenterCrop(224), |
||||
|
transforms.ToTensor(), |
||||
|
transforms.Normalize( |
||||
|
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
||||
|
]) |
||||
|
|
||||
|
clip_model_type = 'clip_vit_b32' |
||||
|
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True) |
||||
|
|
||||
|
self.model = ClipCaptionModel(prefix = 10) |
||||
|
model_path = os.path.dirname(__file__) + '/weights/' + config['weights'] |
||||
|
self.model.load_state_dict(torch.load(model_path, map_location=CPU)) |
||||
|
self.model = model.eval() |
||||
|
|
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def __call__(self, data:): |
||||
|
vec = self._inference_from_image(data) |
||||
|
return vec |
||||
|
|
||||
|
def _preprocess(self, img): |
||||
|
img = to_pil(img) |
||||
|
processed_img = self.self.clip_tfms(img).unsqueeze(0).to(self.device) |
||||
|
return processed_img |
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def _inference_from_image(self, img): |
||||
|
img = self._preprocess(img) |
||||
|
clip_feat = self.clip_model.encode_image(image) |
||||
|
|
||||
|
prefix_length = 10 |
||||
|
prefix_embed = self.model.clip_project(clip_feat).reshape(1, prefix_length, -1) |
||||
|
|
||||
|
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] |
||||
|
return generated_text_prefix |
||||
|
|
||||
|
def _configs(self): |
||||
|
config = {} |
||||
|
config['clipcap_coco'] = {} |
||||
|
config['clipcap_coco']['weights'] = 'weights/coco_weights.pt' |
||||
|
config['clipcap_conceptual'] = {} |
||||
|
config['clipcap_conceptual']['weights'] = 'weights/conceptual_weights.pt' |
||||
|
return config |
||||
|
|
@ -0,0 +1,166 @@ |
|||||
|
import clip |
||||
|
import torch |
||||
|
import skimage.io as io |
||||
|
import PIL.Image |
||||
|
import numpy as np |
||||
|
import torch.nn.functional as nnf |
||||
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
||||
|
from tqdm import tqdm, trange |
||||
|
from clipcap_model import MLP, ClipCaptionModel, ClipCaptionPrefix |
||||
|
|
||||
|
is_gpu = False |
||||
|
device = CUDA(0) if is_gpu else "cpu" |
||||
|
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) |
||||
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
||||
|
CPU = torch.device('cpu') |
||||
|
|
||||
|
|
||||
|
def generate2( |
||||
|
model, |
||||
|
tokenizer, |
||||
|
tokens=None, |
||||
|
prompt=None, |
||||
|
embed=None, |
||||
|
entry_count=1, |
||||
|
entry_length=67, # maximum number of words |
||||
|
top_p=0.8, |
||||
|
temperature=1., |
||||
|
stop_token: str = '.', |
||||
|
): |
||||
|
model.eval() |
||||
|
generated_num = 0 |
||||
|
generated_list = [] |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
filter_value = -float("Inf") |
||||
|
device = next(model.parameters()).device |
||||
|
|
||||
|
with torch.no_grad(): |
||||
|
|
||||
|
for entry_idx in trange(entry_count): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
|
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
|
||||
|
for i in range(entry_length): |
||||
|
|
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
||||
|
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
||||
|
sorted_indices_to_remove = cumulative_probs > top_p |
||||
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1].clone() |
||||
|
sorted_indices_to_remove[..., 0] = 0 |
||||
|
|
||||
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
||||
|
logits[:, indices_to_remove] = filter_value |
||||
|
next_token = torch.argmax(logits, -1).unsqueeze(0) |
||||
|
next_token_embed = model.gpt.transformer.wte(next_token) |
||||
|
if tokens is None: |
||||
|
tokens = next_token |
||||
|
else: |
||||
|
tokens = torch.cat((tokens, next_token), dim=1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
if stop_token_index == next_token.item(): |
||||
|
break |
||||
|
|
||||
|
output_list = list(tokens.squeeze().cpu().numpy()) |
||||
|
output_text = tokenizer.decode(output_list) |
||||
|
generated_list.append(output_text) |
||||
|
|
||||
|
return generated_list[0] |
||||
|
|
||||
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
||||
|
entry_length=67, temperature=1., stop_token: str = '.'): |
||||
|
|
||||
|
model.eval() |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
tokens = None |
||||
|
scores = None |
||||
|
device = next(model.parameters()).device |
||||
|
seq_lengths = torch.ones(beam_size, device=device) |
||||
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
||||
|
with torch.no_grad(): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
for i in range(entry_length): |
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
logits = logits.softmax(-1).log() |
||||
|
if scores is None: |
||||
|
scores, next_tokens = logits.topk(beam_size, -1) |
||||
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
||||
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
||||
|
if tokens is None: |
||||
|
tokens = next_tokens |
||||
|
else: |
||||
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
else: |
||||
|
logits[is_stopped] = -float(np.inf) |
||||
|
logits[is_stopped, 0] = 0 |
||||
|
scores_sum = scores[:, None] + logits |
||||
|
seq_lengths[~is_stopped] += 1 |
||||
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
||||
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
||||
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
||||
|
seq_lengths = seq_lengths[next_tokens_source] |
||||
|
next_tokens = next_tokens % scores_sum.shape[1] |
||||
|
next_tokens = next_tokens.unsqueeze(1) |
||||
|
tokens = tokens[next_tokens_source] |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
generated = generated[next_tokens_source] |
||||
|
scores = scores_sum_average * seq_lengths |
||||
|
is_stopped = is_stopped[next_tokens_source] |
||||
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
||||
|
if is_stopped.all(): |
||||
|
break |
||||
|
scores = scores / seq_lengths |
||||
|
output_list = tokens.cpu().numpy() |
||||
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
||||
|
order = scores.argsort(descending=True) |
||||
|
output_texts = [output_texts[i] for i in order] |
||||
|
return output_texts |
||||
|
|
||||
|
prefix_length = 10 |
||||
|
|
||||
|
model = ClipCaptionModel(prefix_length) |
||||
|
model_path = '/Users/zilliz/git/image_captioning/git/clipcap/weights/coco_weights.pt' |
||||
|
model.load_state_dict(torch.load(model_path, map_location=CPU)) |
||||
|
model = model.eval() |
||||
|
|
||||
|
use_beam_search = False #@param {type:"boolean"} |
||||
|
use_beam_search = True #@param {type:"boolean"} |
||||
|
|
||||
|
UPLOADED_FILE = 'einstein.jpg' |
||||
|
image = io.imread(UPLOADED_FILE) |
||||
|
pil_image = PIL.Image.fromarray(image) |
||||
|
|
||||
|
image = preprocess(pil_image).unsqueeze(0).to(device) |
||||
|
with torch.no_grad(): |
||||
|
# if type(model) is ClipCaptionE2E: |
||||
|
# prefix_embed = model.forward_image(image) |
||||
|
# else: |
||||
|
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) |
||||
|
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) |
||||
|
if use_beam_search: |
||||
|
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] |
||||
|
else: |
||||
|
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) |
||||
|
|
||||
|
print(generated_text_prefix) |
||||
|
|
||||
|
|
Binary file not shown.
@ -0,0 +1,136 @@ |
|||||
|
import torch |
||||
|
import torch.nn.functional as nnf |
||||
|
#@title Imports |
||||
|
|
||||
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
||||
|
import clip |
||||
|
import os |
||||
|
from typing import Tuple, List, Union, Optional |
||||
|
from torch import nn |
||||
|
import numpy as np |
||||
|
import torch |
||||
|
import torch.nn.functional as nnf |
||||
|
import sys |
||||
|
|
||||
|
T = torch.Tensor |
||||
|
D = torch.device |
||||
|
is_gpu = False |
||||
|
|
||||
|
def get_device(device_id: int) -> D: |
||||
|
if not torch.cuda.is_available(): |
||||
|
return CPU |
||||
|
device_id = min(torch.cuda.device_count() - 1, device_id) |
||||
|
return torch.device(f'cuda:{device_id}') |
||||
|
|
||||
|
class MLP(nn.Module): |
||||
|
|
||||
|
def forward(self, x: T) -> T: |
||||
|
return self.model(x) |
||||
|
|
||||
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
||||
|
super(MLP, self).__init__() |
||||
|
layers = [] |
||||
|
for i in range(len(sizes) -1): |
||||
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
||||
|
if i < len(sizes) - 2: |
||||
|
layers.append(act()) |
||||
|
self.model = nn.Sequential(*layers) |
||||
|
|
||||
|
class ClipCaptionModel(nn.Module): |
||||
|
|
||||
|
#@functools.lru_cache #FIXME |
||||
|
def get_dummy_token(self, batch_size: int, device: D) -> T: |
||||
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
||||
|
|
||||
|
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): |
||||
|
embedding_text = self.gpt.transformer.wte(tokens) |
||||
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
||||
|
#print(embedding_text.size()) #torch.Size([5, 67, 768]) |
||||
|
#print(prefix_projections.size()) #torch.Size([5, 1, 768]) |
||||
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
||||
|
if labels is not None: |
||||
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
||||
|
labels = torch.cat((dummy_token, tokens), dim=1) |
||||
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
||||
|
return out |
||||
|
|
||||
|
def __init__(self, prefix_length: int, prefix_size: int = 512): |
||||
|
super(ClipCaptionModel, self).__init__() |
||||
|
self.prefix_length = prefix_length |
||||
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
||||
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
||||
|
if prefix_length > 10: # not enough memory |
||||
|
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) |
||||
|
else: |
||||
|
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) |
||||
|
|
||||
|
class ClipCaptionPrefix(ClipCaptionModel): |
||||
|
|
||||
|
def parameters(self, recurse: bool = True): |
||||
|
return self.clip_project.parameters() |
||||
|
|
||||
|
def train(self, mode: bool = True): |
||||
|
super(ClipCaptionPrefix, self).train(mode) |
||||
|
self.gpt.eval() |
||||
|
return self |
||||
|
|
||||
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
||||
|
entry_length=67, temperature=1., stop_token: str = '.'): |
||||
|
|
||||
|
model.eval() |
||||
|
stop_token_index = tokenizer.encode(stop_token)[0] |
||||
|
tokens = None |
||||
|
scores = None |
||||
|
device = next(model.parameters()).device |
||||
|
seq_lengths = torch.ones(beam_size, device=device) |
||||
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
||||
|
with torch.no_grad(): |
||||
|
if embed is not None: |
||||
|
generated = embed |
||||
|
else: |
||||
|
if tokens is None: |
||||
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
||||
|
tokens = tokens.unsqueeze(0).to(device) |
||||
|
generated = model.gpt.transformer.wte(tokens) |
||||
|
for i in range(entry_length): |
||||
|
outputs = model.gpt(inputs_embeds=generated) |
||||
|
logits = outputs.logits |
||||
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
||||
|
logits = logits.softmax(-1).log() |
||||
|
if scores is None: |
||||
|
scores, next_tokens = logits.topk(beam_size, -1) |
||||
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
||||
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
||||
|
if tokens is None: |
||||
|
tokens = next_tokens |
||||
|
else: |
||||
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
else: |
||||
|
logits[is_stopped] = -float(np.inf) |
||||
|
logits[is_stopped, 0] = 0 |
||||
|
scores_sum = scores[:, None] + logits |
||||
|
seq_lengths[~is_stopped] += 1 |
||||
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
||||
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
||||
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
||||
|
seq_lengths = seq_lengths[next_tokens_source] |
||||
|
next_tokens = next_tokens % scores_sum.shape[1] |
||||
|
next_tokens = next_tokens.unsqueeze(1) |
||||
|
tokens = tokens[next_tokens_source] |
||||
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
||||
|
generated = generated[next_tokens_source] |
||||
|
scores = scores_sum_average * seq_lengths |
||||
|
is_stopped = is_stopped[next_tokens_source] |
||||
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
||||
|
generated = torch.cat((generated, next_token_embed), dim=1) |
||||
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
||||
|
if is_stopped.all(): |
||||
|
break |
||||
|
scores = scores / seq_lengths |
||||
|
output_list = tokens.cpu().numpy() |
||||
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
||||
|
order = scores.argsort(descending=True) |
||||
|
output_texts = [output_texts[i] for i in order] |
||||
|
return output_texts |
||||
|
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in new issue