copied
Readme
Files and versions
1.8 KiB
Image Captioning with ExpansionNet v2
author: David Wang
Description
This operator generates the caption with ExpansionNet v2 which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from jchenghu/ExpansionNet_v2.
Code Example
Load an image from path './image.jpg' to generate the caption.
Write the pipeline in simplified style:
import towhee
towhee.glob('./image.jpg') \
.image_decode() \
.image_captioning.expansionnet_v2(model_name='expansionnet_rf') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./image.jpg') \
.image_decode['path', 'img']() \
.image_captioning.expansionnet_v2['img', 'text'](model_name='expansionnet_rf') \
.select['img', 'text']() \
.show()
Factory Constructor
Create the operator via the following factory method
expansionnet_v2(model_name)
Parameters:
model_name: str
The model name of ExpansionNet v2. Supported model names:
- expansionnet_rf
Interface
An image captioning operator takes a towhee image as input and generate the correspoing caption.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray)
The image to generate caption.
Returns: str
The caption generated by model.
1.8 KiB
Image Captioning with ExpansionNet v2
author: David Wang
Description
This operator generates the caption with ExpansionNet v2 which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from jchenghu/ExpansionNet_v2.
Code Example
Load an image from path './image.jpg' to generate the caption.
Write the pipeline in simplified style:
import towhee
towhee.glob('./image.jpg') \
.image_decode() \
.image_captioning.expansionnet_v2(model_name='expansionnet_rf') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./image.jpg') \
.image_decode['path', 'img']() \
.image_captioning.expansionnet_v2['img', 'text'](model_name='expansionnet_rf') \
.select['img', 'text']() \
.show()
Factory Constructor
Create the operator via the following factory method
expansionnet_v2(model_name)
Parameters:
model_name: str
The model name of ExpansionNet v2. Supported model names:
- expansionnet_rf
Interface
An image captioning operator takes a towhee image as input and generate the correspoing caption.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray)
The image to generate caption.
Returns: str
The caption generated by model.