|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import numpy
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List, Union
|
|
|
|
|
|
|
|
import towhee
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee import register
|
|
|
|
from towhee.types import Image
|
|
|
|
# from towhee.dc2 import accelerate
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
from PIL import Image as PILImage
|
|
|
|
|
|
|
|
import timm
|
|
|
|
from timm.data import create_transform
|
|
|
|
from timm.models import create_model, get_pretrained_cfg
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
log = logging.getLogger('timm_op')
|
|
|
|
log.setLevel(logging.ERROR)
|
|
|
|
|
|
|
|
|
|
|
|
def torch_no_grad(f):
|
|
|
|
def wrap(*args, **kwargs):
|
|
|
|
with torch.no_grad():
|
|
|
|
return f(*args, **kwargs)
|
|
|
|
return wrap
|
|
|
|
|
|
|
|
|
|
|
|
# @accelerate
|
|
|
|
class Model:
|
|
|
|
def __init__(self, model_name, device, num_classes):
|
|
|
|
self.device = device
|
|
|
|
self.model = create_model(model_name, pretrained=True, num_classes=num_classes)
|
|
|
|
self.model.eval()
|
|
|
|
self.model.to(device)
|
|
|
|
|
|
|
|
def __call__(self, x: torch.Tensor):
|
|
|
|
return self.model.forward_features(x.to(self.device))
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class TimmImage(NNOperator):
|
|
|
|
"""
|
|
|
|
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
|
|
|
|
Args:
|
|
|
|
model_name (`str`):
|
|
|
|
Which model to use for the embeddings.
|
|
|
|
num_classes (`int = 1000`):
|
|
|
|
Number of classes for classification.
|
|
|
|
skip_preprocess (`bool = False`):
|
|
|
|
Whether skip image transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
model_name: str = None,
|
|
|
|
num_classes: int = 1000,
|
|
|
|
skip_preprocess: bool = False,
|
|
|
|
device: str = None
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
if device is None:
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
self.device = device
|
|
|
|
self.model_name = model_name
|
|
|
|
if self.model_name:
|
|
|
|
self.model = Model(
|
|
|
|
model_name=model_name,
|
|
|
|
device=self.device,
|
|
|
|
num_classes=num_classes
|
|
|
|
)
|
|
|
|
self.tfms = create_transform(
|
|
|
|
input_size=self.config['input_size'],
|
|
|
|
interpolation=self.config['interpolation'],
|
|
|
|
mean=self.config['mean'],
|
|
|
|
std=self.config['std'],
|
|
|
|
crop_pct=self.config['crop_pct']
|
|
|
|
)
|
|
|
|
self.skip_tfms = skip_preprocess
|
|
|
|
else:
|
|
|
|
log.warning('The operator is initialized without specified model.')
|
|
|
|
pass
|
|
|
|
|
|
|
|
@torch_no_grad
|
|
|
|
def __call__(self, data: Union[List['towhee.types.Image'], 'towhee.types.Image']):
|
|
|
|
if not isinstance(data, list):
|
|
|
|
imgs = [data]
|
|
|
|
else:
|
|
|
|
imgs = data
|
|
|
|
img_list = []
|
|
|
|
for img in imgs:
|
|
|
|
img = self.convert_img(img) if isinstance(img, numpy.ndarray) else img.convert('RGB')
|
|
|
|
img = img if self.skip_tfms else self.tfms(img)
|
|
|
|
img_list.append(img)
|
|
|
|
inputs = torch.stack(img_list)
|
|
|
|
inputs = inputs
|
|
|
|
features = self.model(inputs)
|
|
|
|
if isinstance(features, list):
|
|
|
|
features = [self.post_proc(x) for x in features]
|
|
|
|
else:
|
|
|
|
features = self.post_proc(features)
|
|
|
|
|
|
|
|
if isinstance(data, list):
|
|
|
|
vecs = [list(x.detach().numpy()) for x in features] if isinstance(features, list) \
|
|
|
|
else list(features.detach().numpy())
|
|
|
|
else:
|
|
|
|
vecs = [x.squeeze(0).detach().numpy()] if isinstance(features, list) \
|
|
|
|
else features.squeeze(0).detach().numpy()
|
|
|
|
return vecs
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _model(self):
|
|
|
|
return self.model.model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def config(self):
|
|
|
|
config = get_pretrained_cfg(self.model_name)
|
|
|
|
return config
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def convert_img(self, img: towhee._types.Image):
|
|
|
|
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
|
|
|
|
return img
|
|
|
|
|
|
|
|
def post_proc(self, features):
|
|
|
|
features = features.to('cpu')
|
|
|
|
if features.dim() == 3:
|
|
|
|
features = features[:, 0]
|
|
|
|
if features.dim() == 4:
|
|
|
|
global_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
features = global_pool(features)
|
|
|
|
features = features.flatten(1)
|
|
|
|
assert features.dim() == 2, f'Invalid output dim {features.dim()}'
|
|
|
|
return features
|
|
|
|
|
|
|
|
def save_model(self, format: str = 'pytorch', path: str = 'default'):
|
|
|
|
if path == 'default':
|
|
|
|
path = str(Path(__file__).parent)
|
|
|
|
path = os.path.join(path, 'saved', format)
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
name = self.model_name.replace('/', '-')
|
|
|
|
path = os.path.join(path, name)
|
|
|
|
if format in ['pytorch', 'torchscript']:
|
|
|
|
path = path + '.pt'
|
|
|
|
elif format == 'onnx':
|
|
|
|
path = path + '.onnx'
|
|
|
|
else:
|
|
|
|
raise AttributeError(f'Invalid format {format}.')
|
|
|
|
dummy_input = torch.rand((1,) + self.config['input_size'])
|
|
|
|
if format == 'pytorch':
|
|
|
|
torch.save(self._model, path)
|
|
|
|
elif format == 'torchscript':
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
jit_model = torch.jit.script(self._model)
|
|
|
|
except Exception:
|
|
|
|
jit_model = torch.jit.trace(self._model, dummy_input, strict=False)
|
|
|
|
torch.jit.save(jit_model, path)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as torchscript: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.')
|
|
|
|
elif format == 'onnx':
|
|
|
|
self._model.forward = self._model.forward_features
|
|
|
|
try:
|
|
|
|
torch.onnx.export(self._model.to('cpu'),
|
|
|
|
dummy_input,
|
|
|
|
path,
|
|
|
|
input_names=['input_0'],
|
|
|
|
output_names=['output_0'],
|
|
|
|
opset_version=12,
|
|
|
|
dynamic_axes={
|
|
|
|
'input_0': {0: 'batch_size'},
|
|
|
|
'output_0': {0: 'batch_size'}
|
|
|
|
},
|
|
|
|
do_constant_folding=True
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as onnx: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as onnx: {e}.')
|
|
|
|
# todo: elif format == 'tensorrt':
|
|
|
|
else:
|
|
|
|
log.error(f'Unsupported format "{format}".')
|
|
|
|
return Path(path).resolve()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def supported_model_names(format: str = None):
|
|
|
|
if timm.__version__ != '0.6.12':
|
|
|
|
log.warning('Please note that the model list is tested with timm==0.6.12, please check your timm version.')
|
|
|
|
full_list = list(set(timm.list_models(pretrained=True)) - set([
|
|
|
|
'coat_mini',
|
|
|
|
'coat_tiny',
|
|
|
|
'crossvit_9_240',
|
|
|
|
'crossvit_9_dagger_240',
|
|
|
|
'crossvit_15_240',
|
|
|
|
'crossvit_15_dagger_240',
|
|
|
|
'crossvit_15_dagger_408',
|
|
|
|
'crossvit_18_240',
|
|
|
|
'crossvit_18_dagger_240',
|
|
|
|
'crossvit_18_dagger_408',
|
|
|
|
'crossvit_base_240',
|
|
|
|
'crossvit_small_240',
|
|
|
|
'crossvit_tiny_240',
|
|
|
|
]))
|
|
|
|
full_list.sort()
|
|
|
|
if format in [None, 'pytorch']:
|
|
|
|
model_list = full_list
|
|
|
|
elif format == 'onnx':
|
|
|
|
to_remove = [
|
|
|
|
'bat_resnext26ts',
|
|
|
|
'convmixer_1024_20_ks9_p14',
|
|
|
|
'convmixer_1536_20',
|
|
|
|
'convmixer_768_32',
|
|
|
|
'eca_halonext26ts',
|
|
|
|
'efficientformer_l1',
|
|
|
|
'efficientformer_l3',
|
|
|
|
'efficientformer_l7',
|
|
|
|
'halo2botnet50ts_256',
|
|
|
|
'halonet26t',
|
|
|
|
'halonet50ts',
|
|
|
|
'haloregnetz_b',
|
|
|
|
'lamhalobotnet50ts_256',
|
|
|
|
'levit_128',
|
|
|
|
'levit_128s',
|
|
|
|
'levit_192',
|
|
|
|
'levit_256',
|
|
|
|
'levit_384',
|
|
|
|
'pvt_v2_b2_li',
|
|
|
|
'sehalonet33ts',
|
|
|
|
'tf_efficientnet_cc_b0_4e',
|
|
|
|
'tf_efficientnet_cc_b0_8e',
|
|
|
|
'tf_efficientnet_cc_b1_8e',
|
|
|
|
'tresnet_l',
|
|
|
|
'tresnet_l_448',
|
|
|
|
'tresnet_m',
|
|
|
|
'tresnet_m_448',
|
|
|
|
'tresnet_m_miil_in21k',
|
|
|
|
'tresnet_v2_l',
|
|
|
|
'tresnet_xl',
|
|
|
|
'tresnet_xl_448',
|
|
|
|
'volo_d1_224',
|
|
|
|
'volo_d1_384',
|
|
|
|
'volo_d2_224',
|
|
|
|
'volo_d2_384',
|
|
|
|
'volo_d3_224',
|
|
|
|
'volo_d3_448',
|
|
|
|
'volo_d4_224',
|
|
|
|
'volo_d4_448',
|
|
|
|
'volo_d5_224',
|
|
|
|
'volo_d5_448',
|
|
|
|
'volo_d5_512'
|
|
|
|
]
|
|
|
|
# assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
# todo: elif format == 'torchscript':
|
|
|
|
# todo: elif format == 'tensorrt'
|
|
|
|
else:
|
|
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch".')
|
|
|
|
return model_list
|
|
|
|
|
|
|
|
@property
|
|
|
|
def supported_formats(self):
|
|
|
|
if self.model_name in self.supported_model_names(format='onnx'):
|
|
|
|
return ['onnx']
|
|
|
|
else:
|
|
|
|
return []
|
|
|
|
|
|
|
|
def input_schema(self):
|
|
|
|
return [(Image, (-1, -1, 3))]
|
|
|
|
|
|
|
|
def output_schema(self):
|
|
|
|
image = Image(numpy.random.randn(480, 480, 3), "RGB")
|
|
|
|
ret = self(image)
|
|
|
|
data_type = type(ret.reshape(-1)[0])
|
|
|
|
return [(data_type, ret.shape)]
|