|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
import towhee
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee import register
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
from PIL import Image as PILImage
|
|
|
|
|
|
|
|
from timm.data.transforms_factory import create_transform
|
|
|
|
from timm.data import resolve_data_config
|
|
|
|
from timm.models.factory import create_model
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
log = logging.getLogger()
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class TimmImage(NNOperator):
|
|
|
|
"""
|
|
|
|
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
|
|
|
|
Args:
|
|
|
|
model_name (`str`):
|
|
|
|
Which model to use for the embeddings.
|
|
|
|
num_classes (`int = 1000`):
|
|
|
|
Number of classes for classification.
|
|
|
|
skip_preprocess (`bool = False`):
|
|
|
|
Whether skip image transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model_name: str, num_classes: int = 1000, skip_preprocess: bool = False) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
self.model = create_model(model_name, pretrained=True, num_classes=num_classes)
|
|
|
|
self.model.to(self.device)
|
|
|
|
self.model.eval()
|
|
|
|
config = resolve_data_config({}, model=self.model)
|
|
|
|
self.tfms = create_transform(**config)
|
|
|
|
self.skip_tfms = skip_preprocess
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def __call__(self, img: towhee._types.Image) -> numpy.ndarray:
|
|
|
|
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
|
|
|
|
if not self.skip_tfms:
|
|
|
|
img = self.tfms(img).unsqueeze(0)
|
|
|
|
img = img.to(self.device)
|
|
|
|
features = self.model.forward_features(img)
|
|
|
|
if features.dim() == 4:
|
|
|
|
global_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
features = global_pool(features)
|
|
|
|
|
|
|
|
features = features.to('cpu')
|
|
|
|
feature_vector = features.flatten().detach().numpy()
|
|
|
|
return feature_vector
|
|
|
|
|
|
|
|
|
|
|
|
# if __name__ == '__main__':
|
|
|
|
# from towhee import ops
|
|
|
|
#
|
|
|
|
# path = '/image/path/or/link'
|
|
|
|
#
|
|
|
|
# decoder = ops.image_decode.cv2()
|
|
|
|
# img = decoder(path)
|
|
|
|
#
|
|
|
|
# op = TimmImage('resnet50')
|
|
|
|
# out = op(img)
|
|
|
|
# print(out)
|