|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import numpy
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List, Union
|
|
|
|
|
|
|
|
import towhee
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee import register
|
|
|
|
from towhee.types import Image
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
from PIL import Image as PILImage
|
|
|
|
|
|
|
|
import timm
|
|
|
|
from timm.data.transforms_factory import create_transform
|
|
|
|
from timm.data import resolve_data_config
|
|
|
|
from timm.models.factory import create_model
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
log = logging.getLogger('timm_op')
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class TimmImage(NNOperator):
|
|
|
|
"""
|
|
|
|
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
|
|
|
|
Args:
|
|
|
|
model_name (`str`):
|
|
|
|
Which model to use for the embeddings.
|
|
|
|
num_classes (`int = 1000`):
|
|
|
|
Number of classes for classification.
|
|
|
|
skip_preprocess (`bool = False`):
|
|
|
|
Whether skip image transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
model_name: str = 'resnet50',
|
|
|
|
num_classes: int = 1000,
|
|
|
|
skip_preprocess: bool = False,
|
|
|
|
pretrained: bool = True,
|
|
|
|
device: str = None
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
if device is None:
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
self.device = device
|
|
|
|
self.model_name = model_name
|
|
|
|
self.model = create_model(self.model_name, pretrained=pretrained, num_classes=num_classes)
|
|
|
|
self.model.eval()
|
|
|
|
self.model.to(self.device)
|
|
|
|
|
|
|
|
self.config = resolve_data_config({}, model=self.model)
|
|
|
|
self.tfms = create_transform(**self.config)
|
|
|
|
self.skip_tfms = skip_preprocess
|
|
|
|
|
|
|
|
def __call__(self, data: Union[List[towhee._types.Image], towhee._types.Image]):
|
|
|
|
if not isinstance(data, list):
|
|
|
|
imgs = [data]
|
|
|
|
else:
|
|
|
|
imgs = data
|
|
|
|
img_list = []
|
|
|
|
for img in imgs:
|
|
|
|
img = self.convert_img(img)
|
|
|
|
img = img if self.skip_tfms else self.tfms(img)
|
|
|
|
img_list.append(img)
|
|
|
|
inputs = torch.stack(img_list)
|
|
|
|
inputs = inputs.to(self.device)
|
|
|
|
features = self.model.forward_features(inputs)
|
|
|
|
if features.dim() == 4:
|
|
|
|
global_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
features = global_pool(features)
|
|
|
|
features = features.to('cpu').flatten(1)
|
|
|
|
if isinstance(data, list):
|
|
|
|
vecs = list(features.detach().numpy())
|
|
|
|
else:
|
|
|
|
vecs = features.squeeze(0).detach().numpy()
|
|
|
|
return vecs
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def convert_img(self, img: towhee._types.Image):
|
|
|
|
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
|
|
|
|
return img
|
|
|
|
|
|
|
|
def save_model(self, format: str = 'pytorch', path: str = 'default'):
|
|
|
|
if path == 'default':
|
|
|
|
path = str(Path(__file__).parent)
|
|
|
|
path = os.path.join(path, 'saved', format)
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
name = self.model_name.replace('/', '-')
|
|
|
|
path = os.path.join(path, name)
|
|
|
|
dummy_input = torch.rand((1,) + self.config['input_size'])
|
|
|
|
if format == 'pytorch':
|
|
|
|
path = path + '.pt'
|
|
|
|
torch.save(self.model, path)
|
|
|
|
elif format == 'torchscript':
|
|
|
|
path = path + '.pt'
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
jit_model = torch.jit.script(self.model)
|
|
|
|
except Exception:
|
|
|
|
jit_model = torch.jit.trace(self.model, dummy_input, strict=False)
|
|
|
|
torch.jit.save(jit_model, path)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as torchscript: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.')
|
|
|
|
elif format == 'onnx':
|
|
|
|
path = path + '.onnx'
|
|
|
|
try:
|
|
|
|
torch.onnx.export(self.model,
|
|
|
|
dummy_input,
|
|
|
|
path,
|
|
|
|
input_names=['input_0'],
|
|
|
|
output_names=['output_0'],
|
|
|
|
opset_version=13,
|
|
|
|
dynamic_axes={
|
|
|
|
'input_0': {0: 'batch_size'},
|
|
|
|
'output_0': {0: 'batch_size'}
|
|
|
|
},
|
|
|
|
do_constant_folding=True
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as onnx: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as onnx: {e}.')
|
|
|
|
# todo: elif format == 'tensorrt':
|
|
|
|
else:
|
|
|
|
log.error(f'Unsupported format "{format}".')
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def supported_model_names(format: str = None):
|
|
|
|
full_list = timm.list_models(pretrained=True)
|
|
|
|
full_list.sort()
|
|
|
|
if format is None:
|
|
|
|
model_list = full_list
|
|
|
|
elif format == 'pytorch':
|
|
|
|
to_remove = []
|
|
|
|
assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
elif format == 'onnx':
|
|
|
|
to_remove = []
|
|
|
|
assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
# todo: elif format == 'torchscript':
|
|
|
|
# todo: elif format == 'tensorrt'
|
|
|
|
else:
|
|
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch".')
|
|
|
|
return model_list
|
|
|
|
|
|
|
|
def input_schema(self):
|
|
|
|
return [(Image, (-1, -1, 3))]
|
|
|
|
|
|
|
|
def output_schema(self):
|
|
|
|
image = Image(numpy.random.randn(480, 480, 3), "RGB")
|
|
|
|
ret = self(image)
|
|
|
|
data_type = type(ret.reshape(-1)[0])
|
|
|
|
return [(data_type, ret.shape)]
|