logo
Browse Source

Update

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
test
Jael Gu 3 years ago
parent
commit
bc098ab1aa
  1. 76
      README.md
  2. 4
      __init__.py
  3. 32
      timm_image.py

76
README.md

@ -6,25 +6,58 @@
## Desription
An image embedding operator implemented with pretrained models provided by [Timm](https://github.com/rwightman/pytorch-image-models).
An image embedding operator generates a vector given an image.
This operator extracts features for image with pretrained models provided by [Timm](https://github.com/rwightman/pytorch-image-models).
Timm is a deep-learning library developed by [Ross Wightman](https://twitter.com/wightmanr),
which maintains SOTA deep-learning models and tools in computer vision.
## Code Example
Load an image from path './dog.jpg'
and use the pretrained ResNet50 model ('resnet50') to generate an image embedding.
*Write the pipeline in simplified style*:
```python
from towhee import ops
import numpy as np
from towhee import dc
img_encoder = ops.image_embedding.timm(model_name='resnet50')
fake_img = np.zeros((256, 256, 3))
image_embedding = img_encoder(fake_img)
dc.glob('./dog.jpg') \
.image_decode.cv2() \
.image_embedding.timm(model_name='resnet50') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import dc
dc.glob['path']('./dog.jpg') \
.image_decode.cv2['path', 'img']() \
.image_embedding.timm['img', 'vec'](model_name='resnet50') \
.select('vec') \
.to_list()
```
## Factory Constructor
Create the operator via the following factory method
***ops.image_embedding.timm(model_name)***
***image_embedding.timm(model_name='resnet34', num_classes=1000, skip_preprocess=False)***
**Parameters:**
***model_name***: *str*
​ The model name in string.
If no model name is given, it will use the default value "resnet34".
Refer [Timm Docs](https://fastai.github.io/timmdocs/#List-Models-with-Pretrained-Weights) to get a full list of supported models.
skip_preprocess (bool):
Flag to control whether to skip image preprocess, defaults to False.
If set to True, image preprocess steps such as transform, normalization will be skipped.
In this case, the user should guarantee that all the input images are already reprocessed properly, and thus can be fed to model directly.
## Interface
@ -47,32 +80,3 @@ It uses the pre-trained model specified by model name to generate an image embed
## Code Example
Load an image from path './dog.jpg'
and use the pretrained ResNet50 model ('resnet50') to generate an image embedding.
*Write the pipeline in simplified style*:
```python
from towhee import dc
dc.glob('./dog.jpg')
.image_decode()
.image_embedding.timm(model_name='resnet50')
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import dc
dc.glob['path']('./dog.jpg')
.image_decode['path', 'img']()
.image_embedding.timm['img', 'vec'](model_name='resnet50')
.select('vec')
.show()
```

4
__init__.py

@ -15,5 +15,5 @@
from .timm_image import TimmImage
def timm(model_name: str, num_classes: int=1000):
return TimmImage(model_name=model_name, num_classes=num_classes)
def timm(model_name: str, num_classes: int = 1000, skip_preprocess: bool = False):
return TimmImage(model_name=model_name, num_classes=num_classes, skip_preprocess=skip_preprocess)

32
timm_image.py

@ -16,13 +16,14 @@ import logging
import numpy
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types import Image as towheeImage
from towhee.types.arg import arg, to_image_color
from towhee import register
import torch
from torch import nn
from PIL import Image as PILImage
import cv2
from timm.data.transforms_factory import create_transform
from timm.data import resolve_data_config
@ -43,9 +44,11 @@ class TimmImage(NNOperator):
Which model to use for the embeddings.
num_classes (`int = 1000`):
Number of classes for classification.
skip_preprocess (`bool = False`):
Whether skip image transforms.
"""
def __init__(self, model_name: str, num_classes: int = 1000) -> None:
def __init__(self, model_name: str, num_classes: int = 1000, skip_preprocess: bool = False) -> None:
super().__init__()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = create_model(model_name, pretrained=True, num_classes=num_classes)
@ -53,19 +56,12 @@ class TimmImage(NNOperator):
self.model.eval()
config = resolve_data_config({}, model=self.model)
self.tfms = create_transform(**config)
self.skip_tfms = skip_preprocess
def __call__(self, img: numpy.ndarray) -> numpy.ndarray:
if hasattr(img, 'mode'):
if img.mode not in ['RGB', 'BGR']:
log.error(f'Invalid image mode: expect "RGB" or "BGR" but receive "{img.mode}".')
raise AssertionError(f'Invalid image mode "{img.mode}".')
elif img.mode == 'BGR':
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
log.warning('Converting image mode from "BGR" to "RGB" ...')
else:
log.warning(f'Image mode is not specified. Using "RGB" now.')
@arg(1, to_image_color('RGB'))
def __call__(self, img: towheeImage) -> numpy.ndarray:
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
if not self.skip_tfms:
img = self.tfms(img).unsqueeze(0)
img = img.to(self.device)
features = self.model.forward_features(img)
@ -79,13 +75,13 @@ class TimmImage(NNOperator):
# if __name__ == '__main__':
# from towhee._types import Image
# from towhee import ops
#
# path = '/image/path/or/link'
#
# path = '/path/to/image'
# img = cv2.imread(path)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# img = Image(img)
# decoder = ops.image_decode.cv2()
# img = decoder(path)
#
# op = TimmImage('resnet50')
# out = op(img)
# print(out)

Loading…
Cancel
Save