|
|
@ -16,66 +16,202 @@ import sys |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
import torch |
|
|
|
from torchvision import transforms |
|
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
from torch import nn |
|
|
|
|
|
|
|
from transformers import AutoProcessor, BlipForImageTextRetrieval |
|
|
|
from transformers import logging as t_logging |
|
|
|
from towhee import register |
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag |
|
|
|
from towhee.types.arg import arg, to_image_color |
|
|
|
from towhee.types.image_utils import from_pil, to_pil |
|
|
|
|
|
|
|
log = logging.getLogger('run_op') |
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
|
|
t_logging.set_verbosity_error() |
|
|
|
|
|
|
|
#@accelerate |
|
|
|
class BLIPModelVision(nn.Module): |
|
|
|
def __init__(self, model): |
|
|
|
super().__init__() |
|
|
|
self.model = model |
|
|
|
|
|
|
|
def forward(self, image): |
|
|
|
image_embeds = self.model.visual_encoder(image) |
|
|
|
image_embeds = self.model.vision_proj(image_embeds[:,0,:]) |
|
|
|
return image_embeds |
|
|
|
|
|
|
|
#@accelerate |
|
|
|
class BLIPModelText(nn.Module): |
|
|
|
def __init__(self, model): |
|
|
|
super().__init__() |
|
|
|
self.model = model |
|
|
|
|
|
|
|
def forward(self, input_ids, attention_mask): |
|
|
|
text_features = self.model.text_encoder(input_ids, attention_mask = attention_mask, |
|
|
|
return_dict = False)[0] |
|
|
|
text_features = self.model.text_proj(text_features[:,0,:]) |
|
|
|
return text_features |
|
|
|
|
|
|
|
@register(output_schema=['vec']) |
|
|
|
class Blip(NNOperator): |
|
|
|
""" |
|
|
|
BLIP multi-modal embedding operator |
|
|
|
""" |
|
|
|
def __init__(self, model_name: str, modality: str): |
|
|
|
def __init__(self, model_name: str, modality: str, device:str = 'cpu', checkpoint_path: str = None): |
|
|
|
super().__init__() |
|
|
|
sys.path.append(str(Path(__file__).parent)) |
|
|
|
from models.blip import blip_feature_extractor |
|
|
|
image_size = 224 |
|
|
|
model_url = self._configs()[model_name]['weights'] |
|
|
|
self.model = blip_feature_extractor(pretrained=model_url, image_size=image_size, vit='base') |
|
|
|
self.modality = modality |
|
|
|
self.model_name = model_name |
|
|
|
self.device = device |
|
|
|
cfg = self._configs()[model_name] |
|
|
|
|
|
|
|
try: |
|
|
|
blip_model = BlipForImageTextRetrieval.from_pretrained(cfg) |
|
|
|
except Exception as e: |
|
|
|
log.error(f'Fail to load model by name: {self.model_name}') |
|
|
|
raise e |
|
|
|
if checkpoint_path: |
|
|
|
try: |
|
|
|
state_dict = torch.load(checkpoint_path, map_location=self.device) |
|
|
|
self.model.load_state_dict(state_dict) |
|
|
|
except Exception as e: |
|
|
|
log.error(f'Fail to load state dict from {checkpoint_path}: {e}') |
|
|
|
self.processor = AutoProcessor.from_pretrained('Salesforce/blip-itm-base-coco') |
|
|
|
|
|
|
|
if self.modality == 'image': |
|
|
|
self.model = BLIPModelVision(blip_model) |
|
|
|
elif self.modality == 'text': |
|
|
|
self.model = BLIPModelText(blip_model) |
|
|
|
else: |
|
|
|
raise ValueError('modality[{}] not implemented.'.format(self.modality)) |
|
|
|
|
|
|
|
self._modality = modality |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
self.model.to(self.device) |
|
|
|
self.model.eval() |
|
|
|
|
|
|
|
self.tfms = transforms.Compose([ |
|
|
|
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), |
|
|
|
transforms.ToTensor(), |
|
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
|
|
]) |
|
|
|
|
|
|
|
def __call__(self, data): |
|
|
|
if self._modality == 'image': |
|
|
|
vec = self._inference_from_image(data) |
|
|
|
elif self._modality == 'text': |
|
|
|
vec = self._inference_from_text(data) |
|
|
|
else: |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|
|
|
raise ValueError('modality[{}] not implemented.'.format(self._modality)) |
|
|
|
return vec.detach().cpu().numpy().flatten() |
|
|
|
|
|
|
|
def _inference_from_text(self, text): |
|
|
|
text_feature = self.model(None, text, mode='text', device=self.device)[0,0] |
|
|
|
inputs = self.processor(text=text, padding=True, return_tensors='pt') |
|
|
|
inputs = inputs.to(self.device) |
|
|
|
text_feature = self.model(input_ids = inputs.input_ids, attention_mask = inputs.attention_mask)[0] |
|
|
|
return text_feature |
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB')) |
|
|
|
def _inference_from_image(self, img): |
|
|
|
img = self._preprocess(img) |
|
|
|
caption = '' |
|
|
|
image_feature = self.model(img, caption, mode='image', device=self.device)[0,0] |
|
|
|
inputs = self.processor(images=img, return_tensors='pt') |
|
|
|
inputs = inputs.to(self.device) |
|
|
|
image_feature = self.model(inputs) |
|
|
|
return image_feature |
|
|
|
|
|
|
|
def _preprocess(self, img): |
|
|
|
img = to_pil(img) |
|
|
|
processed_img = self.tfms(img).unsqueeze(0).to(self.device) |
|
|
|
return processed_img |
|
|
|
|
|
|
|
def _configs(self): |
|
|
|
config = {} |
|
|
|
config['blip_base'] = {} |
|
|
|
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth' |
|
|
|
config['blip_itm_base'] = {} |
|
|
|
config['blip_itm_base']['weights'] = 'Salesforce/blip-itm-base-coco' |
|
|
|
config['blip_itm_base']['image_size'] = 224 |
|
|
|
return config |
|
|
|
|
|
|
|
@property |
|
|
|
def _model(self): |
|
|
|
return self.model |
|
|
|
|
|
|
|
def train(self, **kwargs): |
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
@property |
|
|
|
def supported_formats(self): |
|
|
|
onnxes = self.supported_model_names(format='onnx') |
|
|
|
if self.model_name in onnxes: |
|
|
|
return ['onnx'] |
|
|
|
else: |
|
|
|
return ['pytorch'] |
|
|
|
|
|
|
|
@staticmethod |
|
|
|
def supported_model_names(format: str = None): |
|
|
|
if format == 'pytorch' or format == 'torchscript' or format == 'onnx': |
|
|
|
model_list = [ |
|
|
|
'blip_itm_base', |
|
|
|
] |
|
|
|
else: |
|
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".') |
|
|
|
return model_list |
|
|
|
|
|
|
|
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'): |
|
|
|
import os |
|
|
|
from PIL import Image |
|
|
|
from torch.onnx import export as onnx_export |
|
|
|
|
|
|
|
if output_file == 'default': |
|
|
|
output_file = str(Path(__file__).parent) |
|
|
|
output_file = os.path.join(output_file, 'saved', model_type) |
|
|
|
os.makedirs(output_file, exist_ok=True) |
|
|
|
name = self.model_name.replace('/', '-') |
|
|
|
output_file = os.path.join(output_file, name) |
|
|
|
if model_type in ['pytorch', 'torchscript']: |
|
|
|
output_file = output_file + '.pt' |
|
|
|
elif model_type == 'onnx': |
|
|
|
output_file = output_file + '.onnx' |
|
|
|
else: |
|
|
|
raise AttributeError('Unsupported model_type.') |
|
|
|
if self.modality == 'image': |
|
|
|
sz = self.processor.feature_extractor.crop_size |
|
|
|
if isinstance(sz, int): |
|
|
|
h = sz |
|
|
|
w = sz |
|
|
|
elif isinstance(sz, dict): |
|
|
|
h = sz['height'] |
|
|
|
w = sz['width'] |
|
|
|
dummy_input = Image.new('RGB', (w, h), color = 'red') |
|
|
|
inputs = self.processor(images=dummy_input, return_tensors='pt') # a dictionary |
|
|
|
elif self.modality == 'text': |
|
|
|
dummy_input = 'dummy' |
|
|
|
inputs = self.processor(text=dummy_input, padding=True, return_tensors='pt') |
|
|
|
else: |
|
|
|
raise ValueError('modality[{}] not implemented.'.format(self.modality)) |
|
|
|
|
|
|
|
if model_type == 'pytorch': |
|
|
|
torch.save(self._model, output_file) |
|
|
|
elif model_type == 'torchscript': |
|
|
|
inputs = list(inputs.values()) |
|
|
|
try: |
|
|
|
try: |
|
|
|
jit_model = torch.jit.script(self._model) |
|
|
|
except Exception: |
|
|
|
jit_model = torch.jit.trace(self._model, inputs, strict=False) |
|
|
|
torch.jit.save(jit_model, output_file) |
|
|
|
except Exception as e: |
|
|
|
log.error(f'Fail to save as torchscript: {e}.') |
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.') |
|
|
|
elif model_type == 'onnx': |
|
|
|
if self.modality == 'image': |
|
|
|
input_names= ['pixel_values'] |
|
|
|
output_names=['image_embeds'] |
|
|
|
dynamic_axes={'pixel_values': {0: 'batch'}, 'image_embeds': {0: 'batch'}} |
|
|
|
elif self.modality == 'text': |
|
|
|
input_names= ['input_ids', 'attention_mask'] |
|
|
|
output_names=['text_embeds'] |
|
|
|
dynamic_axes={'input_ids': {0: 'batch', 1: 'sequence'}, 'attention_mask': {0: 'batch', 1: 'sequence'}, 'text_embeds': {0: 'batch'}} |
|
|
|
else: |
|
|
|
raise ValueError('modality[{}] not implemented.'.format(self.modality)) |
|
|
|
|
|
|
|
onnx_export(self.model, |
|
|
|
(dict(inputs),), |
|
|
|
f=Path(output_file), |
|
|
|
input_names= input_names, |
|
|
|
output_names=output_names, |
|
|
|
dynamic_axes=dynamic_axes, |
|
|
|
do_constant_folding=True, |
|
|
|
opset_version=14, |
|
|
|
) |
|
|
|
else: |
|
|
|
pass |
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|