logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

76 lines
2.9 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
import torch
import ipdb
from towhee.types.image_utils import from_pil, to_pil
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
@register(output_schema=['vec'])
class Blip(NNOperator):
"""
BLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
from models.blip import blip_feature_extractor
image_size = 224
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth'
self.model = blip_feature_extractor(pretrained=model_url, image_size=image_size, vit='base')
self._modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tfms = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
def __call__(self, data):
ipdb.set_trace()
if self._modality == 'image':
vec = self._inference_from_image(data)
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
text_feature = self.model(None, text, mode='text', device=self.device)[0,0]
return text_feature
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
#img = to_pil(img)
#image = self.tfms(img).unsqueeze(0).to(self.device)
#image_features = self.model.encode_image(image)
img = self._preprocess(img)
caption = ''
image_feature = self.model(img, caption, mode='image', device=self.device)[0,0]
return image_feature
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img