logo
Browse Source

init the op.

Signed-off-by: wxywb <xy.wang@zilliz.com>
hf
wxywb 3 years ago
parent
commit
ccd5499b68
  1. 109
      README.md
  2. 19
      __init__.py
  3. 64
      clip.py
  4. BIN
      tabular1.png
  5. BIN
      tabular2.png
  6. BIN
      vec1.png
  7. BIN
      vec2.png

109
README.md

@ -1,2 +1,109 @@
# clip
# Image-Text Retrieval Embdding with CLIP
*author: David Wang*
<br />
## Description
This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2108.02927) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.
<br />
## Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./teddy.jpg') \
.image_decode() \
.image_text_embedding.clip(model_name='clip_vit_b32', modality='image') \
.show()
towhee.dc(["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.clip(model_name='clip_vit_b32', modality='text') \
.show()
```
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec1.png" alt="result1" style="height:20px;"/>
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec2.png" alt="result2" style="height:20px;"/>
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./teddy.jpg') \
.image_decode['path', 'img']() \
.image_text_embedding.clip['img', 'vec'](model_name='clip_vit_b32', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.clip['text','vec'](model_name='clip_vit_b32', modality='text') \
.select['text', 'vec']() \
.show()
```
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular1.png" alt="result1" style="height:60px;"/>
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular2.png" alt="result2" style="height:60px;"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***clip(model_name, modality)***
**Parameters:**
​ ***model_name:*** *str*
​ The model name of CLIP. Supported model names:
- clip_resnet_r50
- clip_resnet_r101
- clip_vit_b32
- clip_vit_b16
​ ***modality:*** *str*
​ Which modality(*image* or *text*) is used to generate the embedding.
<br />
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
​ The data (image or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .clip import Clip
def clip(model_name: str, modality: str):
return Clip(model_name, modality)

64
clip.py

@ -0,0 +1,64 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
from towhee.models import clip
@register(output_schema=['vec'])
class Clip(NNOperator):
"""
CLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
self.modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True)
self.tokenize = clip.tokenize
self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
def __call__(self, data):
if self.modality == 'image':
vec = self._inference_from_image(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
text = self.tokenize(text).to(self.device)
text_features = self.model.encode_text(text)
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = to_pil(img)
image = self.tfms(img).unsqueeze(0).to(self.device)
image_features = self.model.encode_image(image)
return image_features

BIN
tabular1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 185 KiB

BIN
tabular2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
vec1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
vec2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Loading…
Cancel
Save