|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
from pathlib import Path
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torchvision import transforms
|
|
|
|
from timm.models.hub import download_cached_file
|
|
|
|
|
|
|
|
from towhee import register
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee.types.image_utils import from_pil, to_pil
|
|
|
|
|
|
|
|
def get_model(model):
|
|
|
|
if isinstance(model, torch.nn.DataParallel) \
|
|
|
|
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
|
|
|
return model.module
|
|
|
|
else:
|
|
|
|
return model
|
|
|
|
|
|
|
|
def is_url(url_or_filename):
|
|
|
|
parsed = urlparse(url_or_filename)
|
|
|
|
return parsed.scheme in ("http", "https")
|
|
|
|
|
|
|
|
def load_checkpoint(url_or_filename, models, device):
|
|
|
|
if is_url(url_or_filename):
|
|
|
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
|
|
|
checkpoint = torch.load(cached_file, map_location='cpu')
|
|
|
|
elif os.path.isfile(url_or_filename):
|
|
|
|
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
|
|
|
else:
|
|
|
|
raise RuntimeError('checkpoint url or path is invalid')
|
|
|
|
|
|
|
|
if is_url(url_or_filename):
|
|
|
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
|
|
|
checkpoint = torch.load(cached_file, map_location='cpu')
|
|
|
|
elif os.path.isfile(url_or_filename):
|
|
|
|
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
|
|
|
else:
|
|
|
|
raise RuntimeError('checkpoint url or path is invalid')
|
|
|
|
|
|
|
|
state_dict = OrderedDict()
|
|
|
|
for k, v in checkpoint['state_dict'].items():
|
|
|
|
state_dict[k.replace('module.', '')] = v
|
|
|
|
old_args = checkpoint['args']
|
|
|
|
|
|
|
|
model = getattr(models, old_args.model)(rand_embed=False,
|
|
|
|
ssl_mlp_dim=old_args.ssl_mlp_dim, ssl_emb_dim=old_args.ssl_emb_dim)
|
|
|
|
model.to(device)
|
|
|
|
model.load_state_dict(state_dict, strict=True)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Slip(NNOperator):
|
|
|
|
"""
|
|
|
|
SLIP multi-modal embedding operator
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str, modality: str):
|
|
|
|
super().__init__()
|
|
|
|
sys.path.append(str(Path(__file__).parent))
|
|
|
|
import models
|
|
|
|
from tokenizer import SimpleTokenizer
|
|
|
|
self.tokenizer = SimpleTokenizer()
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
self._modality = modality
|
|
|
|
self.model = load_checkpoint(self._configs()[model_name]['weights'], models, self.device)
|
|
|
|
self.model.to(self.device)
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
self.tfms = transforms.Compose([
|
|
|
|
transforms.Resize(224),
|
|
|
|
transforms.CenterCrop(224),
|
|
|
|
lambda x: x.convert('RGB'),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
])
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
if self._modality == 'image':
|
|
|
|
vec = self._inference_from_image(data)
|
|
|
|
elif self._modality == 'text':
|
|
|
|
vec = self._inference_from_text(data)
|
|
|
|
else:
|
|
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
|
|
|
vec = vec / vec.norm(dim=-1, keepdim=True)
|
|
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
|
|
|
|
def _inference_from_text(self, text):
|
|
|
|
text = self.tokenizer(text).to(self.device)
|
|
|
|
text = text.view(-1, 77).contiguous()
|
|
|
|
embedding = get_model(self.model).encode_text(text)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def _inference_from_image(self, img):
|
|
|
|
img = self._preprocess(img)
|
|
|
|
img = img.to(self.device)
|
|
|
|
embedding = get_model(self.model).encode_image(img)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
def _preprocess(self, img):
|
|
|
|
img = to_pil(img)
|
|
|
|
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
|
|
|
|
return processed_img
|
|
|
|
|
|
|
|
def _configs(self):
|
|
|
|
config = {}
|
|
|
|
config['slip_vit_small'] = {}
|
|
|
|
config['slip_vit_small']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_small_100ep.pt'
|
|
|
|
config['slip_vit_base'] = {}
|
|
|
|
config['slip_vit_base']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt'
|
|
|
|
config['slip_vit_large'] = {}
|
|
|
|
config['slip_vit_large']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt'
|
|
|
|
return config
|
|
|
|
|