taiyi
copied
wxywb
2 years ago
2 changed files with 65 additions and 0 deletions
@ -0,0 +1,65 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
import torch |
|||
from transformers import BertForSequenceClassification, BertConfig, BertTokenizer |
|||
from transformers import CLIPProcessor, CLIPModel |
|||
|
|||
@register(output_schema=['vec']) |
|||
class Taiyi(NNOperator): |
|||
""" |
|||
Taiyi multi-modal embedding operator |
|||
""" |
|||
def __init__(self, model_name: str, modality: str): |
|||
self.modality = modality |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.text_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese") |
|||
self.text_encoder = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval() |
|||
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") |
|||
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|||
|
|||
def inference_single_data(self, data): |
|||
if self.modality == 'image': |
|||
vec = self._inference_from_image(data) |
|||
elif self.modality == 'text': |
|||
vec = self._inference_from_text(data) |
|||
else: |
|||
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|||
return vec.detach().cpu().numpy().flatten() |
|||
|
|||
def __call__(self, data): |
|||
if not isinstance(data, list): |
|||
data = [data] |
|||
else: |
|||
data = data |
|||
results = [] |
|||
for single_data in data: |
|||
result = self.inference_single_data(single_data) |
|||
results.append(result) |
|||
if len(data) == 1: |
|||
return results[0] |
|||
else: |
|||
return results |
|||
|
|||
def _inference_from_text(self, text): |
|||
self.text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device) |
|||
text_features = text_encoder(text).logits |
|||
return text_features |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def _inference_from_image(self, img): |
|||
image = to_pil(image) |
|||
image = self.processor(images=image.raw), return_tensors="pt") |
|||
image_features = clip_model.get_image_features(**image) |
|||
return image_features |
|||
|
Loading…
Reference in new issue