animegan
copied
Filip
3 years ago
12 changed files with 244 additions and 0 deletions
@ -0,0 +1,54 @@ |
|||
# AnimeGanV2 Style-Transfer Operator |
|||
|
|||
Authors: filip |
|||
|
|||
## Overview |
|||
|
|||
AnimeGanV2 is a style transfer net that transforms images to looking like they fit in an anime movie. |
|||
|
|||
## Interface |
|||
|
|||
```python |
|||
__init__(self, model_name: str, framework: str = 'pytorch') |
|||
``` |
|||
|
|||
**Args:** |
|||
|
|||
- model_name: |
|||
- which weights to use for inference. |
|||
- supports 'celeba', 'facepaintv1', 'facepaitv2', 'hayao', 'paprika', 'shinkai' |
|||
- framework: |
|||
- the framework of the model |
|||
- supported types: `str`, default is 'pytorch' |
|||
|
|||
```python |
|||
__call__(self, image: 'towhee.types.Image') |
|||
``` |
|||
|
|||
**Args:** |
|||
|
|||
- image: |
|||
- the input image |
|||
- supported types: `towhee.types.Image` |
|||
|
|||
**Returns:** |
|||
|
|||
The Operator returns a tuple `Tuple[('styled_image', numpy.ndarray)]` containing following fields: |
|||
|
|||
- styled_image: |
|||
- styled photo |
|||
- data type: `numpy.ndarray` |
|||
- shape: (3, x, x) |
|||
- format: RGB |
|||
- values: [0,1] |
|||
|
|||
## Requirements |
|||
|
|||
You can get the required python package by [requirements.txt](./requirements.txt). |
|||
|
|||
|
|||
## Reference |
|||
|
|||
Jie Chen, Gang Liu, Xin Chen |
|||
"AnimeGAN: A Novel Lightweight GAN for Photo Animation." |
|||
ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019. |
@ -0,0 +1,3 @@ |
|||
from .animegan import Animegan |
|||
def animegan(name): |
|||
return Animegan(name) |
@ -0,0 +1,34 @@ |
|||
import os |
|||
from pathlib import Path |
|||
from torchvision import transforms |
|||
|
|||
from towhee import register |
|||
from towhee.operator import Operator, OperatorFlag |
|||
from towhee.types import arg, to_image_color |
|||
from towhee._types import Image |
|||
import warnings |
|||
warnings.filterwarnings('ignore') |
|||
|
|||
@register(output_schema=['styled_image'], flag=OperatorFlag.STATELESS | OperatorFlag.REUSEABLE,) |
|||
class Animegan(Operator): |
|||
""" |
|||
PyTorch model for image embedding. |
|||
""" |
|||
def __init__(self, model_name: str, framework: str = 'pytorch') -> None: |
|||
super().__init__() |
|||
if framework == 'pytorch': |
|||
import importlib.util |
|||
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') |
|||
opname = os.path.basename(str(Path(__file__))).split('.')[0] |
|||
spec = importlib.util.spec_from_file_location(opname, path) |
|||
module = importlib.util.module_from_spec(spec) |
|||
spec.loader.exec_module(module) |
|||
self.model = module.Model(model_name) |
|||
self.tfms = transforms.Compose([ |
|||
transforms.ToTensor() |
|||
]) |
|||
@arg(1, to_image_color('RGB') ) |
|||
def __call__(self, image): |
|||
img = self.tfms(image).unsqueeze(0) |
|||
styled_image = self.model(img) |
|||
return Image(styled_image, 'RGB') |
@ -0,0 +1,133 @@ |
|||
from torch import nn, load, Tensor |
|||
import os |
|||
from pathlib import Path |
|||
|
|||
|
|||
class ConvNormLReLU(nn.Sequential): |
|||
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False): |
|||
|
|||
pad_layer = { |
|||
"zero": nn.ZeroPad2d, |
|||
"same": nn.ReplicationPad2d, |
|||
"reflect": nn.ReflectionPad2d, |
|||
} |
|||
if pad_mode not in pad_layer: |
|||
raise NotImplementedError |
|||
|
|||
super(ConvNormLReLU, self).__init__( |
|||
pad_layer[pad_mode](padding), |
|||
nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias), |
|||
nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True), |
|||
nn.LeakyReLU(0.2, inplace=True) |
|||
) |
|||
|
|||
|
|||
class InvertedResBlock(nn.Module): |
|||
def __init__(self, in_ch, out_ch, expansion_ratio=2): |
|||
super(InvertedResBlock, self).__init__() |
|||
|
|||
self.use_res_connect = in_ch == out_ch |
|||
bottleneck = int(round(in_ch*expansion_ratio)) |
|||
layers = [] |
|||
if expansion_ratio != 1: |
|||
layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0)) |
|||
|
|||
# dw |
|||
layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True)) |
|||
# pw |
|||
layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False)) |
|||
layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True)) |
|||
|
|||
self.layers = nn.Sequential(*layers) |
|||
|
|||
def forward(self, input): |
|||
out = self.layers(input) |
|||
if self.use_res_connect: |
|||
out = input + out |
|||
return out |
|||
|
|||
|
|||
class Generator(nn.Module): |
|||
def __init__(self, ): |
|||
super().__init__() |
|||
|
|||
self.block_a = nn.Sequential( |
|||
ConvNormLReLU(3, 32, kernel_size=7, padding=3), |
|||
ConvNormLReLU(32, 64, stride=2, padding=(0,1,0,1)), |
|||
ConvNormLReLU(64, 64) |
|||
) |
|||
|
|||
self.block_b = nn.Sequential( |
|||
ConvNormLReLU(64, 128, stride=2, padding=(0,1,0,1)), |
|||
ConvNormLReLU(128, 128) |
|||
) |
|||
|
|||
self.block_c = nn.Sequential( |
|||
ConvNormLReLU(128, 128), |
|||
InvertedResBlock(128, 256, 2), |
|||
InvertedResBlock(256, 256, 2), |
|||
InvertedResBlock(256, 256, 2), |
|||
InvertedResBlock(256, 256, 2), |
|||
ConvNormLReLU(256, 128), |
|||
) |
|||
|
|||
self.block_d = nn.Sequential( |
|||
ConvNormLReLU(128, 128), |
|||
ConvNormLReLU(128, 128) |
|||
) |
|||
|
|||
self.block_e = nn.Sequential( |
|||
ConvNormLReLU(128, 64), |
|||
ConvNormLReLU(64, 64), |
|||
ConvNormLReLU(64, 32, kernel_size=7, padding=3) |
|||
) |
|||
|
|||
self.out_layer = nn.Sequential( |
|||
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False), |
|||
nn.Tanh() |
|||
) |
|||
|
|||
def forward(self, input, align_corners=True): |
|||
out = self.block_a(input) |
|||
half_size = out.size()[-2:] |
|||
out = self.block_b(out) |
|||
out = self.block_c(out) |
|||
|
|||
if align_corners: |
|||
out = nn.functional.interpolate(out, half_size, mode="bilinear", align_corners=True) |
|||
else: |
|||
out = nn.functional.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False) |
|||
out = self.block_d(out) |
|||
|
|||
if align_corners: |
|||
out = nn.functional.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True) |
|||
else: |
|||
out = nn.functional.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False) |
|||
out = self.block_e(out) |
|||
|
|||
out = self.out_layer(out) |
|||
return out |
|||
|
|||
class Model(): |
|||
def __init__(self, model_name) -> None: |
|||
self._model = Generator() |
|||
path = os.path.join(str(Path(__file__).parent), 'weights', model_name + '.pt') |
|||
ckpt = load(path) |
|||
self._model.load_state_dict(ckpt) |
|||
self._model.eval() |
|||
|
|||
|
|||
def __call__(self, img_tensor: Tensor): |
|||
img_tensor = img_tensor * 2 - 1 |
|||
out = self._model(img_tensor).detach() |
|||
out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5 |
|||
return out.numpy() |
|||
|
|||
def train(self): |
|||
""" |
|||
For training model |
|||
""" |
|||
pass |
|||
|
|||
|
|||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,2 @@ |
|||
pathlib |
|||
torchvision |
Loading…
Reference in new issue