animegan
copied
Filip
3 years ago
2 changed files with 65 additions and 55 deletions
@ -1,54 +0,0 @@ |
|||
# AnimeGanV2 Style-Transfer Operator |
|||
|
|||
Authors: filip |
|||
|
|||
## Overview |
|||
|
|||
AnimeGanV2 is a style transfer net that transforms images to looking like they fit in an anime movie. |
|||
|
|||
## Interface |
|||
|
|||
```python |
|||
__init__(self, model_name: str, framework: str = 'pytorch') |
|||
``` |
|||
|
|||
**Args:** |
|||
|
|||
- model_name: |
|||
- which weights to use for inference. |
|||
- supports 'celeba', 'facepaintv1', 'facepaitv2', 'hayao', 'paprika', 'shinkai' |
|||
- framework: |
|||
- the framework of the model |
|||
- supported types: `str`, default is 'pytorch' |
|||
|
|||
```python |
|||
__call__(self, image: 'towhee.types.Image') |
|||
``` |
|||
|
|||
**Args:** |
|||
|
|||
- image: |
|||
- the input image |
|||
- supported types: `towhee.types.Image` |
|||
|
|||
**Returns:** |
|||
|
|||
The Operator returns a tuple `Tuple[('styled_image', numpy.ndarray)]` containing following fields: |
|||
|
|||
- styled_image: |
|||
- styled photo |
|||
- data type: `numpy.ndarray` |
|||
- shape: (3, x, x) |
|||
- format: RGB |
|||
- values: [0,1] |
|||
|
|||
## Requirements |
|||
|
|||
You can get the required python package by [requirements.txt](./requirements.txt). |
|||
|
|||
|
|||
## Reference |
|||
|
|||
Jie Chen, Gang Liu, Xin Chen |
|||
"AnimeGAN: A Novel Lightweight GAN for Photo Animation." |
|||
ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019. |
@ -1,2 +1,66 @@ |
|||
# animegan |
|||
# Animating using AnimeGanV2 |
|||
*author: Filip Haltmayer* |
|||
|
|||
## Description |
|||
|
|||
Convert an image into an animated image using [`AnimeganV2`](https://github.com/TachibanaYoshino/AnimeGANv2). |
|||
|
|||
|
|||
## Code Example |
|||
Load an image from path './image.png'. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
from PIL import Image |
|||
import numpy |
|||
|
|||
pipeline = towhee.glob('./image.png').image_decode.cv2().img2img_translation.animegan(model_name = 'hayao') |
|||
img = pipeline.to_list()[0] |
|||
img = numpy.transpose(img, (1,2,0)) |
|||
img = Image.fromarray((img * 255).astype(numpy.uint8)) |
|||
img.show() |
|||
``` |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***img2img_translation.animegan(model_name = 'which anime model to use')*** |
|||
|
|||
Model options: |
|||
- celeba |
|||
- facepaintv1 |
|||
- facepaintv2 |
|||
- hayao |
|||
- paprika |
|||
- shinkai |
|||
|
|||
## Interface |
|||
|
|||
Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name***: *str* |
|||
|
|||
Which model to use for transfer. |
|||
|
|||
***framework***: *str* |
|||
|
|||
Which ML framework being used, for now only supports PyTorch. |
|||
|
|||
|
|||
|
|||
**Returns**: *numpy.ndarray* |
|||
|
|||
The new image. |
|||
|
|||
|
|||
## Reference |
|||
|
|||
Jie Chen, Gang Liu, Xin Chen |
|||
"AnimeGAN: A Novel Lightweight GAN for Photo Animation." |
|||
ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019. |
|||
|
Loading…
Reference in new issue