logo
Browse Source

Add yolo

Signed-off-by: shiyu22 <shiyu.chen@zilliz.com>
main
shiyu22 2 years ago
parent
commit
7ace58b98c
  1. 73
      README.md
  2. 4
      __init__.py
  3. 5
      requirements.txt
  4. BIN
      test.png
  5. 21
      yolov5.py

73
README.md

@ -1,2 +1,73 @@
# yolo
# Object Detection with Yolo
*author: shiyu22*
<br />
### Description
**Object Detection** is a computer vision technique that locates and identifies people, items, or other objects in an image. Object detection has applications in many areas of computer vision, including image retrieval, image annotation, vehicle counting, object tracking, etc.
This operator uses [PyTorch.yolov5](https://pytorch.org/hub/ultralytics_yolov5/) to detect the object.
<br />
### Code Example
Writing the pipeline in the simplified way
```Python
import towhee
towhee.glob('./test.png') \
.image_decode() \
.object_detection.yolov5() \
.show()
```
<img src="./results1.png" alt="results1" height="40px"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***object_detection.yolov5()***
<br />
### Interface
The operator takes an image as input. It first detects the objects appeared in the image, and gives the bounding box of each object.
**Parameters:**
**img**: numpy.ndarray
​ Image data in ndarray format.
**Return**: List[List[(int, int, int, int)], ...], List[str], List[float]
The return value is a tuple of (boxes, classes, scores). The *boxes* is a list of bounding boxes. Each bounding box is represented by the top-left and the bottom right points, i.e. (x1, y1, x2, y2). The *classes* is a list of prediction labels. The *scores* is a list of the confidence scores.

4
__init__.py

@ -0,0 +1,4 @@
from .yolov5 import Yolov5
def yolo():
return Yolov5()

5
requirements.txt

@ -0,0 +1,5 @@
matplotlib>=3.2.2
opencv-python>=4.1.2
torch>=1.7.0
torchvision>=0.8.1
seaborn

BIN
test.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 257 KiB

21
yolov5.py

@ -0,0 +1,21 @@
import torch
import numpy
from towhee import register
from towhee.operator import NNOperator
@register(output_schema=['boxes', 'classes', 'scores'])
class Yolov5(NNOperator):
def __init__(self, model_name: str ='yolov5s'):
super().__init__()
self._model = torch.hub.load("ultralytics/yolov5", model_name, pretrained=True)
def __call__(self, img: numpy.ndarray):
# Get object detection results with YOLOv5 model
results = self._model(img)
boxes = [re[0:4] for re in results.xyxy[0]]
boxes = [list(map(int, box)) for box in boxes]
classes = list(results.pandas().xyxy[0].name)
scores = list(results.pandas().xyxy[0].confidence)
return [(b, c, s) for b, c, s in zip(boxes, classes, scores)]
Loading…
Cancel
Save