yolov5
copied
shiyu22
3 years ago
6 changed files with 94 additions and 7 deletions
@ -1,2 +1,87 @@ |
|||||
# yolo |
|
||||
|
# Object Detection with Yolov5 |
||||
|
|
||||
|
*author: shiyu22* |
||||
|
|
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
### Description |
||||
|
|
||||
|
**Object Detection** is a computer vision technique that locates and identifies people, items, or other objects in an image. Object detection has applications in many areas of computer vision, including image retrieval, image annotation, vehicle counting, object tracking, etc. |
||||
|
|
||||
|
This operator uses [PyTorch.yolov5](https://pytorch.org/hub/ultralytics_yolov5/) to detect the object. |
||||
|
|
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
### Code Example |
||||
|
|
||||
|
|
||||
|
|
||||
|
Writing the pipeline in the simplified way |
||||
|
|
||||
|
```Python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./test.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.object_detection.yolov5() \ |
||||
|
.show() |
||||
|
``` |
||||
|
|
||||
|
<img src="./results1.png" alt="results1" height="40px"/> |
||||
|
|
||||
|
Writing the same pipeline with explicitly specified inputs and outputs |
||||
|
|
||||
|
```Python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./test.png') \ |
||||
|
.image_decode['path','img']() \ |
||||
|
.object_detection.yolov5['img', ('box', 'class', 'score')]() \ |
||||
|
.select('box', 'class', 'score') \ |
||||
|
.show() |
||||
|
``` |
||||
|
|
||||
|
<img src="./results2.png" alt="results1" height="90px"/> |
||||
|
|
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***object_detection.yolov5()*** |
||||
|
|
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
### Interface |
||||
|
|
||||
|
The operator takes an image as input. It first detects the objects appeared in the image, and gives the bounding box of each object. |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
**img**: numpy.ndarray |
||||
|
|
||||
|
Image data in ndarray format. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Return**: List[(int, int, int, int)], List[str], List[float] |
||||
|
|
||||
|
The return value is a tuple of (boxes, classes, scores). The *boxes* is a list of bounding boxes. Each bounding box is represented by the top-left and the bottom right points, i.e. (x1, y1, x2, y2). The *classes* is a list of prediction labels. The *scores* is a list of the confidence scores. |
||||
|
|
||||
|
@ -1,5 +1,4 @@ |
|||||
from yolov5.yolov5 import Yolov5 |
|
||||
|
|
||||
|
from .yolov5 import Yolov5 |
||||
|
|
||||
def yolov5(): |
def yolov5(): |
||||
return Yolov5() |
return Yolov5() |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 300 KiB |
Loading…
Reference in new issue