logo
ChengZi 2 years ago
parent
commit
1f28684b67
  1. 33
      README.md
  2. 23
      s_bert.py
  3. 86
      train_sts_task.py

33
README.md

@ -99,3 +99,36 @@ from towhee import ops
op = ops.sentence_embedding.sentence_transformers().get_op()
full_list = op.supported_model_names()
```
## Fine-tune
### Get started
In this example, we fine-tune operator in Semantic Textual Similarity (STS) task, which assigns a score on the similarity of two texts.
We use the STSbenchmark as training data to fine-tune.
We only need to construct an op instance and pass in some configurations to train the specified task.
```python
import towhee
import os
from sentence_transformers import util
op = towhee.ops.sentence_embedding.sentence_transformers(model_name='nli-distilroberta-base-v2').get_op()
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
training_config = {
'sts_dataset_path': sts_dataset_path,
'train_batch_size': 16,
'num_epochs': 4,
'model_save_path': './output'
}
op.train(training_config)
```
### Dive deep and customize your training
You can change the [training script](https://towhee.io/sentence-embedding/sentence_transformers/src/branch/main/train_sts_task.py) in your customer way.
Or your can refer to the original [sbert training guide](https://www.sbert.net/docs/training/overview.html) and [code example](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) for more information.

23
s_bert.py

@ -249,3 +249,26 @@ class STransformers(NNOperator):
else:
log.error(f'Invalid or unsupported format "{format}".')
return model_list
def train(self, training_config=None, **kwargs):
from .train_sts_task import train_sts
train_sts(self._model, training_config)
if __name__ == '__main__':
from sentence_transformers import util
op = STransformers(model_name='nli-distilroberta-base-v2')
# Check if dataset exsist. If not, download and extract it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
training_config = {
'sts_dataset_path': sts_dataset_path,
'train_batch_size': 16,
'num_epochs': 4,
'model_save_path': './output'
}
op.train(training_config)

86
train_sts_task.py

@ -0,0 +1,86 @@
# This script is hacked and modified from https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py
# For more specified training tasks, please refer https://github.com/UKPLab/sentence-transformers/tree/master/examples/training
from torch.utils.data import DataLoader
import math
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
import logging
from datetime import datetime
import os
import gzip
import csv
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
def train_sts(model, training_config):
sts_dataset_path = training_config['sts_dataset_path']
train_batch_size = training_config['train_batch_size']
num_epochs = training_config['num_epochs']
model_save_path = training_config['model_save_path']
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
model_save_path = os.path.join('training_stsbenchmark_continue_training-' + datetime.now().strftime(
"%Y-%m-%d_%H-%M-%S"))
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")
train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)
if row['split'] == 'dev':
dev_samples.append(inp_example)
elif row['split'] == 'test':
test_samples.append(inp_example)
else:
train_samples.append(inp_example)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)
# Development set: Measure correlation between cosine score and gold labels
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training. We skip evaluation in this example
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path)
##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
model = SentenceTransformer(model_save_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path=model_save_path)
Loading…
Cancel
Save