copied
Readme
Files and versions
Updated 1 year ago
sentence-embedding
Sentence Embedding with Transformers
author: Jael Gu
Description
A sentence embedding operator generates one embedding vector in ndarray for each input text. The embedding represents the semantic information of the whole input text as one vector. This operator is implemented with pre-trained models from Huggingface Transformers.
Code Example
Use the pre-trained model 'sentence-transformers/paraphrase-albert-small-v2' to generate an embedding for the sentence "Hello, world.".
Write a pipeline with explicit inputs/outputs name specifications:
from towhee import pipe, ops, DataCollection
p = (
pipe.input('text')
.map('text', 'vec',
ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2'))
.output('text', 'vec')
)
DataCollection(p('Hello, world.')).show()
Factory Constructor
Create the operator via the following factory method:
sentence_embedding.transformers(model_name=None)
Parameters:
model_name: str
The model name in string, defaults to None. If None, the operator will be initialized without specified model.
Supported model names: NLP transformers models listed in Huggingface Models.
Please note that only models listed in supported_model_names
are tested by us.
You can refer to Towhee Pipeline for model performance.
checkpoint_path: str
The path to local checkpoint, defaults to None.
- If None, the operator will download and load pretrained model by
model_name
from Huggingface transformers. - The checkpoint path could be a path to a directory containing model weights saved using
save_pretrained()
by HuggingFace Transformers. - Or you can pass a path to a PyTorch
state_dict
save file.
tokenizer: object
The method to tokenize input text, defaults to None.
If None, the operator will use default tokenizer by model_name
from Huggingface transformers.
Interface
The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name, and then return a text emabedding in numpy.ndarray.
__call__(txt)
Parameters:
data: Union[str, list]
The text in string or a list of texts.
Returns:
numpy.ndarray or list
The text embedding (or token embeddings) extracted by model.
If data
is string, the operator returns an embedding in numpy.ndarray with shape of (dim,).
If data
is a list, the operator returns a list of embedding(s) with length of input list.
save_model(format='pytorch', path='default')
Save model to local with specified format.
Parameters:
format: str
The format to export model as, such as 'pytorch', 'torchscript', 'onnx', defaults to 'pytorch'.
path: str
The path where exported model is saved to.
By default, it will save model to saved
directory under the operator cache.
from towhee import ops
op = ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2').get_op()
op.save_model('onnx', 'test.onnx')
PosixPath('/Home/.towhee/operators/sentence-embedding/transformers/main/test.onnx')
supported_model_names(format=None)
Get a list of all supported model names or supported model names for specified model format.
Parameters:
format: str
The model format such as 'pytorch', 'torchscript', 'onnx'.
from towhee import ops
op = ops.sentence_embedding.transformers().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
Fine-tune
Requirement
If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies.
! python -m pip install datasets evaluate scikit-learn
Get started
Simply speaking, you only need to construct an op instance and pass in some configurations to train the specified task.
import towhee
bert_op = towhee.ops.sentence_embedding.transformers(model_name='bert-base-uncased').get_op()
data_args = {
'dataset_name': 'wikitext',
'dataset_config_name': 'wikitext-2-raw-v1',
}
training_args = {
'num_train_epochs': 3, # you can add epoch number to get a better metric.
'per_device_train_batch_size': 8,
'per_device_eval_batch_size': 8,
'do_train': True,
'do_eval': True,
'output_dir': './tmp/test-mlm',
'overwrite_output_dir': True
}
bert_op.train(task='mlm', data_args=data_args, training_args=training_args)
For more infos, refer to the examples.
Dive deep and customize your training
You can change the training script in your customer way. Or your can refer to the original hugging face transformers training examples.
Jael Gu
eac306324b
| 34 Commits | ||
---|---|---|---|
benchmark | 2 years ago | ||
.gitattributes |
1.1 KiB
|
2 years ago | |
README.md |
5.3 KiB
|
1 year ago | |
__init__.py |
723 B
|
2 years ago | |
auto_transformers.py |
13 KiB
|
1 year ago | |
requirements.txt |
56 B
|
2 years ago | |
result.png |
5.7 KiB
|
2 years ago | |
test_onnx.py |
3.5 KiB
|
2 years ago | |
train_clm_with_hf_trainer.py |
18 KiB
|
2 years ago | |
train_mlm_with_hf_trainer.py |
20 KiB
|
2 years ago |