transformers
copied
Jael Gu
3 years ago
4 changed files with 166 additions and 1 deletions
@ -1,2 +1,74 @@ |
|||||
# transformers |
|
||||
|
# Text Embedding with Transformers |
||||
|
|
||||
|
*author: Jael Gu* |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Desription |
||||
|
|
||||
|
A text embedding operator implemented with pretrained models from [Huggingface Transformers](https://huggingface.co/docs/transformers). |
||||
|
|
||||
|
|
||||
|
|
||||
|
```python |
||||
|
from towhee import ops |
||||
|
|
||||
|
text_encoder = ops.text_embedding.transformers("bert-base-cased") |
||||
|
text_embedding = text_encoder("Hello, world.") |
||||
|
``` |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***ops.text_embedding.transformers(model_name)*** |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
A text embedding operator takes a sentence, paragraph, or document in string as an input |
||||
|
and output an embedding vector in ndarray which captures the input's core semantic elements. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***text***: *str* |
||||
|
|
||||
|
The text in string. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns**: *numpy.ndarray* |
||||
|
|
||||
|
The text embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Use the pretrained Bert-Base-Cased model ('bert-base-cased') |
||||
|
to generate a text embedding for the sentence "Hello, world.". |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee.DataCollection as dc |
||||
|
|
||||
|
dc.glob("Hello, world.") |
||||
|
.text_embedding.transformers('bert-base-cased') |
||||
|
.show() |
||||
|
``` |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
from towhee import DataCollection as dc |
||||
|
|
||||
|
dc.glob['text']('Hello, world.') |
||||
|
.text_embedding.transformers['text', 'vec']('bert-base-cased') |
||||
|
.select('vec') |
||||
|
.show() |
||||
|
``` |
||||
|
|
||||
|
|
||||
|
@ -0,0 +1,19 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .auto_transformers import AutoTransformers |
||||
|
|
||||
|
|
||||
|
def transformers(): |
||||
|
return AutoTransformers() |
@ -0,0 +1,70 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
import logging |
||||
|
import numpy |
||||
|
|
||||
|
from transformers import AutoTokenizer, AutoModel |
||||
|
|
||||
|
from towhee.operator import NNOperator |
||||
|
from towhee import register |
||||
|
|
||||
|
import warnings |
||||
|
|
||||
|
warnings.filterwarnings('ignore') |
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class AutoTransformers(NNOperator): |
||||
|
""" |
||||
|
NLP embedding operator that uses the pretrained transformers model gathered by huggingface. |
||||
|
Args: |
||||
|
model_name (`str`): |
||||
|
Which model to use for the embeddings. |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, model_name: str) -> None: |
||||
|
super().__init__() |
||||
|
self.model_name = model_name |
||||
|
try: |
||||
|
self.model = AutoModel.from_pretrained(model_name) |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to load model by name: {self.model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to load tokenizer by name: {self.model_name}') |
||||
|
raise e |
||||
|
|
||||
|
def __call__(self, txt: str) -> numpy.ndarray: |
||||
|
try: |
||||
|
inputs = self.tokenizer(txt, return_tensors="pt") |
||||
|
except Exception as e: |
||||
|
log.error(f'Invalid input for the tokenizer: {self.model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
outs = self.model(**inputs) |
||||
|
except Exception as e: |
||||
|
log.error(f'Invalid input for the model: {self.model_name}') |
||||
|
raise e |
||||
|
try: |
||||
|
features = outs.last_hidden_state.squeeze(0) |
||||
|
except Exception as e: |
||||
|
log.error(f'Fail to extract features by model: {self.model_name}') |
||||
|
raise e |
||||
|
feature_vector = features.detach().numpy() |
||||
|
return feature_vector |
||||
|
|
@ -0,0 +1,4 @@ |
|||||
|
numpy |
||||
|
transformers |
||||
|
sentencepiece |
||||
|
protobuf |
Loading…
Reference in new issue