logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 2 years ago

text-embedding

Text Embedding with Transformers

author: Jael Gu


Description

A text embedding operator takes a sentence, paragraph, or document in string as an input and outputs token embeddings which captures the input's core semantic elements. This operator is implemented with pre-trained models from Huggingface Transformers.


Code Example

Use the pre-trained model 'distilbert-base-cased' to generate a text embedding for the sentence "Hello, world.".

Write a same pipeline with explicit inputs/outputs name specifications:

  • option 1 (towhee>=0.9.0):
from towhee.dc2 import pipe, ops, DataCollection

p = (
    pipe.input('text')
        .map('text', 'vec', ops.text_embedding.transformers(model_name='distilbert-base-cased'))
        .output('text', 'vec')
)

DataCollection(p('Hello, world.')).show()
  • option 2:
import towhee

(
    towhee.dc['text'](["Hello, world."])
          .text_embedding.transformers['text', 'vec'](model_name="distilbert-base-cased")
          .show()
)


Factory Constructor

Create the operator via the following factory method:

text_embedding.transformers(model_name=None)

Parameters:

model_name: str

The model name in string, defaults to None. If None, the operator will be initialized without specified model.

Supported model names:

Albert
  • albert-base-v1
  • albert-large-v1
  • albert-xlarge-v1
  • albert-xxlarge-v1
  • albert-base-v2
  • albert-large-v2
  • albert-xlarge-v2
  • albert-xxlarge-v2
Bart
  • facebook/bart-large
Bert
  • bert-base-cased
  • bert-base-uncased
  • bert-large-cased
  • bert-large-uncased
  • bert-base-multilingual-uncased
  • bert-base-multilingual-cased
  • bert-base-chinese
  • bert-base-german-cased
  • bert-large-uncased-whole-word-masking
  • bert-large-cased-whole-word-masking
  • bert-large-uncased-whole-word-masking-finetuned-squad
  • bert-large-cased-whole-word-masking-finetuned-squad
  • bert-base-cased-finetuned-mrpc
  • bert-base-german-dbmdz-cased
  • bert-base-german-dbmdz-uncased
  • cl-tohoku/bert-base-japanese-whole-word-masking
  • cl-tohoku/bert-base-japanese-char
  • cl-tohoku/bert-base-japanese-char-whole-word-masking
  • TurkuNLP/bert-base-finnish-cased-v1
  • TurkuNLP/bert-base-finnish-uncased-v1
  • wietsedv/bert-base-dutch-cased
BertGeneration
  • google/bert_for_seq_generation_L-24_bbc_encoder
BigBird
  • google/bigbird-roberta-base
  • google/bigbird-roberta-large
  • google/bigbird-base-trivia-itc
BigBirdPegasus
  • google/bigbird-pegasus-large-arxiv
  • google/bigbird-pegasus-large-pubmed
  • google/bigbird-pegasus-large-bigpatent
CamemBert
  • camembert-base
  • Musixmatch/umberto-commoncrawl-cased-v1
  • Musixmatch/umberto-wikipedia-uncased-v1
Canine
  • google/canine-s
  • google/canine-c
Convbert
  • YituTech/conv-bert-base
  • YituTech/conv-bert-medium-small
  • YituTech/conv-bert-small
CTRL - ctrl
DeBERTa
  • microsoft/deberta-base
  • microsoft/deberta-large
  • microsoft/deberta-xlarge
  • microsoft/deberta-base-mnli
  • microsoft/deberta-large-mnli
  • microsoft/deberta-xlarge-mnli
  • microsoft/deberta-v2-xlarge
  • microsoft/deberta-v2-xxlarge
  • microsoft/deberta-v2-xlarge-mnli
  • microsoft/deberta-v2-xxlarge-mnli
DistilBert
  • distilbert-base-uncased
  • distilbert-base-uncased-distilled-squad
  • distilbert-base-cased
  • distilbert-base-cased-distilled-squad
  • distilbert-base-german-cased
  • distilbert-base-multilingual-cased
  • distilbert-base-uncased-finetuned-sst-2-english
Electral
  • google/electra-small-generator
  • google/electra-base-generator
  • google/electra-large-generator
  • google/electra-small-discriminator
  • google/electra-base-discriminator
  • google/electra-large-discriminator
Flaubert
  • flaubert/flaubert_small_cased
  • flaubert/flaubert_base_uncased
  • flaubert/flaubert_base_cased
  • flaubert/flaubert_large_cased
FNet
  • google/fnet-base
  • google/fnet-large
FSMT
  • facebook/wmt19-ru-en
Funnel
  • funnel-transformer/small
  • funnel-transformer/small-base
  • funnel-transformer/medium
  • funnel-transformer/medium-base
  • funnel-transformer/intermediate
  • funnel-transformer/intermediate-base
  • funnel-transformer/large
  • funnel-transformer/large-base
  • funnel-transformer/xlarge-base
  • funnel-transformer/xlarge
GPT
  • openai-gpt
  • gpt2
  • gpt2-medium
  • gpt2-large
  • gpt2-xl
  • distilgpt2
  • EleutherAI/gpt-neo-1.3B
  • EleutherAI/gpt-j-6B
I-Bert
  • kssteven/ibert-roberta-base
LED
  • allenai/led-base-16384
MobileBert
  • google/mobilebert-uncased
MPNet
  • microsoft/mpnet-base
Nystromformer
  • uw-madison/nystromformer-512
Reformer
  • google/reformer-crime-and-punishment
Splinter
  • tau/splinter-base
  • tau/splinter-base-qass
  • tau/splinter-large
  • tau/splinter-large-qass
SqueezeBert
  • squeezebert/squeezebert-uncased
  • squeezebert/squeezebert-mnli
  • squeezebert/squeezebert-mnli-headless
TransfoXL
  • transfo-xl-wt103
XLM
  • xlm-mlm-en-2048
  • xlm-mlm-ende-1024
  • xlm-mlm-enfr-1024
  • xlm-mlm-enro-1024
  • xlm-mlm-tlm-xnli15-1024
  • xlm-mlm-xnli15-1024
  • xlm-clm-enfr-1024
  • xlm-clm-ende-1024
  • xlm-mlm-17-1280
  • xlm-mlm-100-1280
XLMRoberta
  • xlm-roberta-base
  • xlm-roberta-large
  • xlm-roberta-large-finetuned-conll02-dutch
  • xlm-roberta-large-finetuned-conll02-spanish
  • xlm-roberta-large-finetuned-conll03-english
  • xlm-roberta-large-finetuned-conll03-german
XLNet
  • xlnet-base-cased
  • xlnet-large-cased
Yoso
  • uw-madison/yoso-4096


checkpoint_path: str

The path to local checkpoint, defaults to None. If None, the operator will download and load pretrained model by model_name from Huggingface transformers.


tokenizer: object

The method to tokenize input text, defaults to None. If None, the operator will use default tokenizer by model_name from Huggingface transformers.


Interface

The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name. and then return text embedding(s) in ndarray.

__call__(txt)

Parameters:

data: Union[str, list]

​ The text in string or a list of texts. If data is string, the operator returns token embedding(s) in ndarray. If data is a list, the operator returns token embedding(s) in a list.

Returns:

numpy.ndarray or list

​ The text embedding (or token embeddings) extracted by model.


save_model(format='pytorch', path='default')

Save model to local with specified format.

Parameters:

format: str

​ The format of saved model, defaults to 'pytorch'.

path: str

​ The path where model is saved to. By default, it will save model to the operator directory.

from towhee import ops

op = ops.text_embedding.transformers(model_name='distilbert-base-cased').get_op()
op.save_model('onnx', 'test.onnx')

PosixPath('/Home/.towhee/operators/text-embedding/transformers/main/test.onnx')


supported_model_names(format=None)

Get a list of all supported model names or supported model names for specified model format.

Parameters:

format: str

​ The model format such as 'pytorch', 'torchscript'.

from towhee import ops


op = ops.text_embedding.transformers().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}')
2022-12-13 16:25:15,916 - 140704500614336 - auto_transformers.py-auto_transformers:68 - WARNING: The operator is initialized without specified model.
Onnx-support/Total Models: 111/126


Fine-tune

Requirement

If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies.

! python -m pip install datasets evaluate scikit-learn

Get start

We have prepared some most typical use of finetune examples.

Simply speaking, you only need to construct an op instance and pass in some configurations to train the specified task.

import towhee

bert_op = towhee.ops.text_embedding.transformers(model_name='bert-base-uncased').get_op()
data_args = {
    'dataset_name': 'wikitext',
    'dataset_config_name': 'wikitext-2-raw-v1',
}
training_args = {
    'num_train_epochs': 3, # you can add epoch number to get a better metric.
    'per_device_train_batch_size': 8,
    'per_device_eval_batch_size': 8,
    'do_train': True,
    'do_eval': True,
    'output_dir': './tmp/test-mlm',
    'overwrite_output_dir': True
}
bert_op.train(task='mlm', data_args=data_args, training_args=training_args)

For more infos, refer to the examples.

Dive deep and customize your training

You can change the training script in your customer way. Or your can refer to the original hugging face transformers training examples.

Jael Gu f6fba9a0bf Update readme 92 Commits
folder-icon benchmark Update run.py with ann_search.milvus_client 2 years ago
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
10 KiB
download-icon
Update readme 2 years ago
file-icon __init__.py
709 B
download-icon
Debug 3 years ago
file-icon auto_transformers.py
17 KiB
download-icon
Remove sentence post_proc 2 years ago
file-icon requirements.txt
56 B
download-icon
Update requirements 3 years ago
file-icon result.png
5.7 KiB
download-icon
Update readme 2 years ago
file-icon test_onnx.py
3.3 KiB
download-icon
Support sentence embedding 2 years ago
file-icon test_onnx2.py
5.7 KiB
download-icon
Update onnx test 2 years ago
file-icon test_torchscript.py
1.1 KiB
download-icon
Update test scripts 3 years ago
file-icon train_clm_with_hf_trainer.py
18 KiB
download-icon
add print args 2 years ago
file-icon train_mlm_with_hf_trainer.py
20 KiB
download-icon
remove redundant script. 2 years ago