# Video-Text Retrieval Embdding with CLIP4Clip
*author: Chen Zhang*
< br / >
## Description
This operator extracts features for video or text with [CLIP4Clip ](https://arxiv.org/abs/2104.08860 ) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
< br / >
## Code Example
Load an video from path './demo_video.mp4' to generate an video embedding.
Read the text 'kids feeding and playing with the horse' to generate an text embedding.
*Write the pipeline in simplified style* :
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='text', device='cuda:1')) \
.output('text', 'vec')
)
DataCollection(p('kids feeding and playing with the horse')).show()
```
![](text_emb_output.png)
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='video', device='cuda:2')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()
```
![](video_emb_ouput.png)
< br / >
## Factory Constructor
Create the operator via the following factory method
***clip4clip(model_name, modality, weight_path)***
**Parameters:**
** *model_name:*** *str*
The model name of CLIP. Supported model names:
- clip_vit_b32
** *modality:*** *str*
Which modality(*video* or *text* ) is used to generate the embedding.
** *weight_path:*** *str*
pretrained model weights path.
< br / >
## Interface
An video-text embedding operator takes a list of [towhee image ](link/to/towhee/image/api/doc ) or string as input and generate an embedding in ndarray.
**Parameters:**
** *data:*** *List[towhee.types.Image]* or *str*
The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
The data embedding extracted by model.