logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

123 lines
5.1 KiB

3 years ago
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from typing import List, Union
from torchvision import transforms
from towhee.models.clip4clip import convert_tokens_to_id
from towhee.operator.base import NNOperator
from towhee import register
from towhee.models import drl, clip4clip
from PIL import Image as PILImage
from towhee.types import VideoFrame
from pathlib import Path
@register(output_schema=['vec'])
class DRL(NNOperator):
"""
DRL multi-modal embedding operator
"""
def __init__(self, base_encoder: str, modality: str, weight_path: str = None, device: str = None):
super().__init__()
self.modality = modality
if weight_path is None:
weight_path = str(Path(__file__).parent / 'clip_vit_b32_wti.pth')
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.model = drl.create_model(base_encoder=base_encoder, pretrained=True, cdcr=0, weights_path=weight_path, device=device)
3 years ago
self.tokenize = clip4clip.SimpleTokenizer()
self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
self.model.eval()
def __call__(self, data: Union[str, List[VideoFrame]]):
if self.modality == 'video':
vec = self._inference_from_video(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec
def _inference_from_text(self, text: str):
self.model.eval()
text_ids = convert_tokens_to_id(self.tokenize, text)
text_ids = torch.tensor(text_ids).unsqueeze(0).to(self.device)
text_features = self.model.get_text_feat(text_ids) # B(1), N_t, D
return text_features.squeeze(0).detach().cpu().numpy() # N_t, D
def _inference_from_video(self, img_list: List[VideoFrame]):
self.model.eval()
max_frames = 12
video = np.zeros((1, max_frames, 1, 3, 224, 224), dtype=np.float64)
slice_len = len(img_list)
max_video_length = 0 if 0 > slice_len else slice_len
for i, img in enumerate(img_list):
pil_img = PILImage.fromarray(img, img.mode)
tfmed_img = self.tfms(pil_img).unsqueeze(0)
if slice_len >= 1:
video[0, i, ...] = tfmed_img.cpu().numpy()
video_mask = np.zeros((1, max_frames), dtype=np.int32)
video_mask[0, :max_video_length] = [1] * max_video_length
video = torch.as_tensor(video).float().to(self.device)
pair, bs, ts, channel, h, w = video.shape
video = video.view(pair * bs * ts, channel, h, w)
video_mask = torch.as_tensor(video_mask).float().to(self.device)
visual_output = self.model.get_video_feat(video, video_mask, shaped=True) # B(1), N_v, D
return visual_output.squeeze(0).detach().cpu().numpy() # N_v, D
def get_similarity_logits(self, text_feat, video_feat, text_mask, video_mask):
"""
Input is the embedding feature extracted from text or video, calculate the similarity matrix.
When input batch size is 1, return one similarity value.
Args:
text_feat (`torch.Tensor`):
Shape is (B, N_t, D). B means batch size, N_t means token length of text, D mean the dim of the network.
video_feat (`torch.Tensor`):
Shape is (B, N_v, D). B means batch size, N_t means token length of video, D mean the dim of the network.
text_mask (`torch.Tensor`):
Shape is (B, N_t), valid token position is 1, else 0.
video_mask (`torch.Tensor`):
Shape is (B, N_v), valid token position is 1, else 0.
Returns:
Similarity matrix with shape (B, B)
"""
t2v_logits, _, _ = self.model.get_similarity_logits(text_feat, video_feat, text_mask, video_mask, shaped=True)
# (B, B)
return t2v_logits
# if __name__ == '__main__':
# from towhee.models.clip import SimpleTokenizer
# text = 'hello world'
# ids = convert_tokens_to_id(SimpleTokenizer(), text, max_words=32)
# print(ids)
# text_mask = [[1 if i > 0 else 0 for i in ids[0]]]
# print(text_mask)