|
|
@ -16,51 +16,38 @@ This operator extracts features for video or text with [Frozen In Time](https:// |
|
|
|
|
|
|
|
Load a video from path './demo_video.mp4' to generate a video embedding. |
|
|
|
|
|
|
|
Read the text 'kids feeding and playing with the horse' to generate a text embedding. |
|
|
|
|
|
|
|
*Write the pipeline in simplified style*: |
|
|
|
|
|
|
|
- Encode video (default): |
|
|
|
```python |
|
|
|
import towhee |
|
|
|
towhee.dc(['./demo_video.mp4']) \ |
|
|
|
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ |
|
|
|
.runas_op(func=lambda x: [y for y in x]) \ |
|
|
|
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ |
|
|
|
.show() |
|
|
|
from towhee.dc2 import pipe, ops, DataCollection |
|
|
|
|
|
|
|
``` |
|
|
|
<img src="./result1.png" width="800px"/> |
|
|
|
p = ( |
|
|
|
pipe.input('video_path') \ |
|
|
|
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4})) \ |
|
|
|
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \ |
|
|
|
.map('flame_list', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu')) \ |
|
|
|
.output('video_path', 'flame_list', 'vec') |
|
|
|
) |
|
|
|
|
|
|
|
- Encode text: |
|
|
|
```python |
|
|
|
import towhee |
|
|
|
DataCollection(p('./demo_video.mp4')).show() |
|
|
|
|
|
|
|
towhee.dc(['kids feeding and playing with the horse']) \ |
|
|
|
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ |
|
|
|
.show() |
|
|
|
``` |
|
|
|
<img src="./result2.png" width="800px"/> |
|
|
|
<img src="./video_emb_result.png" width="800px"/> |
|
|
|
|
|
|
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|
|
|
Read the text 'kids feeding and playing with the horse' to generate a text embedding. |
|
|
|
|
|
|
|
- Encode text: |
|
|
|
```python |
|
|
|
import towhee |
|
|
|
|
|
|
|
towhee.dc['path'](['./demo_video.mp4']) \ |
|
|
|
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ |
|
|
|
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ |
|
|
|
.video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ |
|
|
|
.select['path', 'vec']() \ |
|
|
|
.show(formatter={'path': 'video_path'}) |
|
|
|
|
|
|
|
towhee.dc['text'](["kids feeding and playing with the horse"]) \ |
|
|
|
.video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ |
|
|
|
.select['text', 'vec']() \ |
|
|
|
.show() |
|
|
|
from towhee.dc2 import pipe, ops, DataCollection |
|
|
|
|
|
|
|
p = ( |
|
|
|
pipe.input('text') \ |
|
|
|
.map('text', 'vec', ops.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu')) \ |
|
|
|
.output('text', 'vec') |
|
|
|
) |
|
|
|
|
|
|
|
DataCollection(p('kids feeding and playing with the horse')).show() |
|
|
|
``` |
|
|
|
<img src="./result3.png" width="800px"/> |
|
|
|
<img src="./result4.png" width="800px"/> |
|
|
|
<img src="./text_emb_result.png" width="800px"/> |
|
|
|
|
|
|
|
|
|
|
|
<br /> |
|
|
|