frozen-in-time
copied
5 changed files with 246 additions and 1 deletions
@ -1,2 +1,112 @@ |
|||
# frozen-in-time |
|||
# Video-Text Retrieval Embedding with Frozen In Time |
|||
|
|||
*author: Jinling Xu* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for video or text with [Frozen In Time](https://arxiv.org/abs/2104.00650) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity. |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Load a video from path './demo_video.mp4' to generate a video embedding. |
|||
|
|||
Read the text 'kids feeding and playing with the horse' to generate a text embedding. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
- Encode video (default): |
|||
```python |
|||
import towhee |
|||
towhee.dc(['./demo_video.mp4']) \ |
|||
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ |
|||
.runas_op(func=lambda x: [y for y in x]) \ |
|||
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ |
|||
.show() |
|||
|
|||
``` |
|||
- Encode text: |
|||
```python |
|||
import towhee |
|||
|
|||
towhee.dc(['kids feeding and playing with the horse']) \ |
|||
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ |
|||
.show() |
|||
``` |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.dc['path'](['./demo_video.mp4']) \ |
|||
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ |
|||
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ |
|||
.video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ |
|||
.show() |
|||
|
|||
towhee.dc['text'](["kids feeding and playing with the horse"]) \ |
|||
.video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ |
|||
.select['text', 'vec']() \ |
|||
.show() |
|||
``` |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***frozen_in_time(model_name, modality, weight_path)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name:*** *str* |
|||
|
|||
The model name of frozen in time. Supported model names: |
|||
- frozen_in_time_base_16_244 |
|||
|
|||
|
|||
***modality:*** *str* |
|||
|
|||
Which modality(*video* or *text*) is used to generate the embedding. |
|||
|
|||
***weight_path:*** *str* |
|||
|
|||
pretrained model weights path. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***data:*** *List[towhee.types.Image]* or *str* |
|||
|
|||
The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The data embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,20 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .frozen_in_time import FrozenInTime |
|||
|
|||
|
|||
def frozen_in_time(model_name: str, modality: str, **kwargs): |
|||
return FrozenInTime(model_name, modality, **kwargs) |
|||
|
Binary file not shown.
@ -0,0 +1,112 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
import numpy |
|||
import numpy as np |
|||
import torch |
|||
|
|||
from typing import List, Union |
|||
from torchvision import transforms |
|||
from towhee.models import frozen_in_time |
|||
from towhee.operator.base import NNOperator |
|||
from towhee import register |
|||
from PIL import Image as PILImage |
|||
from towhee.types import VideoFrame |
|||
from towhee.models.utils.video_transforms import transform_video, get_configs |
|||
from pathlib import Path |
|||
from transformers import AutoTokenizer |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class FrozenInTime(NNOperator): |
|||
""" |
|||
extracts features for video or text with Frozen In Time model |
|||
Args: |
|||
model_name (str): |
|||
Frozen In Time model name to be used in FrozenInTime |
|||
modality (str): |
|||
Flag to decide what to return |
|||
- 'video': return video embedding |
|||
- 'text': return a dense of text embeddings |
|||
weight_path (str): |
|||
Pretrained model weights |
|||
device (str): |
|||
the device to run model |
|||
""" |
|||
|
|||
def __init__(self, model_name: str = 'frozen_in_time_base_16_244', modality: str = 'video', |
|||
weight_path: str = None, |
|||
device: str = None): |
|||
super().__init__() |
|||
self.model_name = model_name |
|||
self.modality = modality |
|||
if weight_path is None: |
|||
weight_path = str(Path(__file__).parent / 'frozen_in_time_base_16_224.pth') |
|||
if device is None: |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
else: |
|||
self.device = device |
|||
self.num_frames = 4 |
|||
self.model = frozen_in_time.FrozenInTime(img_size=224, |
|||
patch_size=16, |
|||
in_chans=3, |
|||
num_frames=self.num_frames, |
|||
attention_style='frozen_in_time', |
|||
is_pretrained=True, |
|||
weights_path=weight_path, |
|||
projection_dim=256, |
|||
video_pretrained_model='vit_base_16x224', |
|||
video_is_load_pretrained=False, |
|||
video_model_type='SpaceTimeTransformer', |
|||
text_is_load_pretrained=False, |
|||
device=device) |
|||
|
|||
self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', TOKENIZERS_PARALLELISM=False) |
|||
self.transform_cfgs = get_configs( |
|||
side_size=224, |
|||
crop_size=224, |
|||
num_frames=self.num_frames, |
|||
mean=[0.48145466, 0.4578275, 0.40821073], |
|||
std=[0.26862954, 0.26130258, 0.27577711], |
|||
) |
|||
self.model.eval() |
|||
|
|||
def __call__(self, data: Union[List[VideoFrame], List[str]]): |
|||
if self.modality == 'video': |
|||
vec = self._inference_from_video(data) |
|||
elif self.modality == 'text': |
|||
vec = self._inference_from_text(data) |
|||
else: |
|||
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|||
return vec |
|||
|
|||
def _inference_from_text(self, text: List[str]): |
|||
text_data = self.tokenizer(text, return_tensors='pt') |
|||
# text_data = torch.tensor(text) |
|||
text_data = text_data.to(self.device) |
|||
text_features = self.model.compute_text(text_data) |
|||
return text_features.squeeze(0).detach().flatten().cpu().numpy() |
|||
|
|||
def _inference_from_video(self, data: List[VideoFrame]): |
|||
# Convert list of towhee.types.Image to numpy.ndarray in float32 |
|||
video = numpy.stack([img.astype(numpy.float32) / 255. for img in data], axis=0) |
|||
assert len(video.shape) == 4 |
|||
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh |
|||
video = transform_video( |
|||
video=video, |
|||
**self.transform_cfgs |
|||
) |
|||
video = video.to(self.device)[None, ...].transpose(1, 2) |
|||
visual_features = self.model.compute_video(video) |
|||
return visual_features.squeeze(0).detach().flatten().cpu().numpy() |
|||
|
@ -0,0 +1,3 @@ |
|||
transformers>=4.19.2 |
|||
einops>=0.4.1 |
|||
timm>=0.4.12 |
Loading…
Reference in new issue