logo
Browse Source

push model

Signed-off-by: zilliz <zilliz@zillizdeMacBook-Pro-5.local>
main
zilliz 3 years ago
parent
commit
831f297d3e
  1. 112
      README.md
  2. 20
      __init__.py
  3. BIN
      demo_video.mp4
  4. 112
      frozen_in_time.py
  5. 3
      requirements.txt

112
README.md

@ -1,2 +1,112 @@
# frozen-in-time
# Video-Text Retrieval Embedding with Frozen In Time
*author: Jinling Xu*
<br />
## Description
This operator extracts features for video or text with [Frozen In Time](https://arxiv.org/abs/2104.00650) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
<br />
## Code Example
Load a video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
*Write the pipeline in simplified style*:
- Encode video (default):
```python
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
.runas_op(func=lambda x: [y for y in x]) \
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \
.show()
```
- Encode text:
```python
import towhee
towhee.dc(['kids feeding and playing with the horse']) \
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
.video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \
.show()
towhee.dc['text'](["kids feeding and playing with the horse"]) \
.video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \
.select['text', 'vec']() \
.show()
```
<br />
## Factory Constructor
Create the operator via the following factory method
***frozen_in_time(model_name, modality, weight_path)***
**Parameters:**
***model_name:*** *str*
​ The model name of frozen in time. Supported model names:
- frozen_in_time_base_16_244
***modality:*** *str*
​ Which modality(*video* or *text*) is used to generate the embedding.
***weight_path:*** *str*
​ pretrained model weights path.
<br />
## Interface
An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.Image]* or *str*
​ The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.

20
__init__.py

@ -0,0 +1,20 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .frozen_in_time import FrozenInTime
def frozen_in_time(model_name: str, modality: str, **kwargs):
return FrozenInTime(model_name, modality, **kwargs)

BIN
demo_video.mp4

Binary file not shown.

112
frozen_in_time.py

@ -0,0 +1,112 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import numpy as np
import torch
from typing import List, Union
from torchvision import transforms
from towhee.models import frozen_in_time
from towhee.operator.base import NNOperator
from towhee import register
from PIL import Image as PILImage
from towhee.types import VideoFrame
from towhee.models.utils.video_transforms import transform_video, get_configs
from pathlib import Path
from transformers import AutoTokenizer
@register(output_schema=['vec'])
class FrozenInTime(NNOperator):
"""
extracts features for video or text with Frozen In Time model
Args:
model_name (str):
Frozen In Time model name to be used in FrozenInTime
modality (str):
Flag to decide what to return
- 'video': return video embedding
- 'text': return a dense of text embeddings
weight_path (str):
Pretrained model weights
device (str):
the device to run model
"""
def __init__(self, model_name: str = 'frozen_in_time_base_16_244', modality: str = 'video',
weight_path: str = None,
device: str = None):
super().__init__()
self.model_name = model_name
self.modality = modality
if weight_path is None:
weight_path = str(Path(__file__).parent / 'frozen_in_time_base_16_224.pth')
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.num_frames = 4
self.model = frozen_in_time.FrozenInTime(img_size=224,
patch_size=16,
in_chans=3,
num_frames=self.num_frames,
attention_style='frozen_in_time',
is_pretrained=True,
weights_path=weight_path,
projection_dim=256,
video_pretrained_model='vit_base_16x224',
video_is_load_pretrained=False,
video_model_type='SpaceTimeTransformer',
text_is_load_pretrained=False,
device=device)
self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', TOKENIZERS_PARALLELISM=False)
self.transform_cfgs = get_configs(
side_size=224,
crop_size=224,
num_frames=self.num_frames,
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
self.model.eval()
def __call__(self, data: Union[List[VideoFrame], List[str]]):
if self.modality == 'video':
vec = self._inference_from_video(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec
def _inference_from_text(self, text: List[str]):
text_data = self.tokenizer(text, return_tensors='pt')
# text_data = torch.tensor(text)
text_data = text_data.to(self.device)
text_features = self.model.compute_text(text_data)
return text_features.squeeze(0).detach().flatten().cpu().numpy()
def _inference_from_video(self, data: List[VideoFrame]):
# Convert list of towhee.types.Image to numpy.ndarray in float32
video = numpy.stack([img.astype(numpy.float32) / 255. for img in data], axis=0)
assert len(video.shape) == 4
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh
video = transform_video(
video=video,
**self.transform_cfgs
)
video = video.to(self.device)[None, ...].transpose(1, 2)
visual_features = self.model.compute_video(video)
return visual_features.squeeze(0).detach().flatten().cpu().numpy()

3
requirements.txt

@ -0,0 +1,3 @@
transformers>=4.19.2
einops>=0.4.1
timm>=0.4.12
Loading…
Cancel
Save