copied
Readme
Files and versions
Updated 3 years ago
video-text-embedding
Video-Text Retrieval Embedding with Frozen In Time
author: Jinling Xu
Description
This operator extracts features for video or text with Frozen In Time which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
Code Example
Load a video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
Write the pipeline in simplified style:
- Encode video (default):
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
.runas_op(func=lambda x: [y for y in x]) \
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \
.show()

- Encode text:
import towhee
towhee.dc(['kids feeding and playing with the horse']) \
.video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \
.show()

Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
.video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \
.select['path', 'vec']() \
.show(formatter={'path': 'video_path'})
towhee.dc['text'](["kids feeding and playing with the horse"]) \
.video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \
.select['text', 'vec']() \
.show()


Factory Constructor
Create the operator via the following factory method
frozen_in_time(model_name, modality, weight_path)
Parameters:
model_name: str
The model name of frozen in time. Supported model names:
- frozen_in_time_base_16_244
modality: str
Which modality(video or text) is used to generate the embedding.
weight_path: str
pretrained model weights path.
Interface
An video-text embedding operator takes a list of Towhee VideoFrame or string as input and generate an embedding in ndarray.
Parameters:
data: List[towhee.types.Image] or str
The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
| 11 Commits | ||
---|---|---|---|
|
1.1 KiB
|
3 years ago | |
|
3.0 KiB
|
3 years ago | |
|
755 B
|
3 years ago | |
|
950 KiB
|
3 years ago | |
|
4.7 KiB
|
3 years ago | |
|
690 MiB
|
3 years ago | |
|
47 B
|
3 years ago | |
|
11 KiB
|
3 years ago | |
|
13 KiB
|
3 years ago | |
|
111 KiB
|
3 years ago | |
|
7.2 KiB
|
3 years ago |