|  |  | @ -17,15 +17,27 @@ This operator extracts features for video or text with [MDMMT: Multidomain Multi | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | ## Code Example | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | Load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio. | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | Read the text to generate a text embedding.  | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  *Write the pipeline code*: | 
			
		
	
		
			
				
					|  |  |  | ```python | 
			
		
	
		
			
				
					|  |  |  | from towhee.dc2 import pipe, ops, DataCollection | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | p = ( | 
			
		
	
		
			
				
					|  |  |  |     pipe.input('text') \ | 
			
		
	
		
			
				
					|  |  |  |         .map('text', 'vec', ops.video_text_embedding.mdmmt(modality='text', device='cuda:0')) \ | 
			
		
	
		
			
				
					|  |  |  |         .output('text', 'vec') | 
			
		
	
		
			
				
					|  |  |  | ) | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | DataCollection(p('Hello world.')).show() | 
			
		
	
		
			
				
					|  |  |  | ``` | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | Load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio. | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | ```python | 
			
		
	
		
			
				
					|  |  |  | import towhee | 
			
		
	
		
			
				
					|  |  |  | import torch | 
			
		
	
		
			
				
					|  |  |  | from towhee.dc2 import pipe, ops, DataCollection | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | torch.manual_seed(42) | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  | @ -52,14 +64,16 @@ features_ind = { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | video_input_dict = {"features": features, "features_t": features_t, "features_ind": features_ind} | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | towhee.dc([video_input_dict]).video_text_embedding.mdmmt(modality='video', device='cpu').show() | 
			
		
	
		
			
				
					|  |  |  | p = ( | 
			
		
	
		
			
				
					|  |  |  |     pipe.input('video_input_dict') \ | 
			
		
	
		
			
				
					|  |  |  |         .map('video_input_dict', 'vec', ops.video_text_embedding.mdmmt(modality='video', device='cuda:0')) \ | 
			
		
	
		
			
				
					|  |  |  |         .output('video_input_dict', 'vec') | 
			
		
	
		
			
				
					|  |  |  | ) | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | towhee.dc(['Hello world.']).video_text_embedding.mdmmt(modality='text', device='cpu').show() | 
			
		
	
		
			
				
					|  |  |  | DataCollection(p(video_input_dict)).show() | 
			
		
	
		
			
				
					|  |  |  | ``` | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | *Write a same pipeline with explicit inputs/outputs name specifications:* | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | <br /> | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  | 
 |