logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

86 lines
1.4 KiB

# Mobilefacenet Face Landmark Detecter
3 years ago
*authors: David Wang*
## Desription
A class of extremely efficient CNN models to extract 68 landmarks from a facial image[1].
```python
from towhee import ops
model = ops.face_landmark_detection.mobilefacenet()
landmark = model(img)
```
## Factory Constructor
Create the operator via the following factory method
***ops.face_landmark_detection.mobilefacenet()***
## Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
**Args:**
***framework***
​ the framework of the model
​ supported types: `str`, default is 'pytorch'
***pretrained***
​ whether load the pretrained weights..
​ supported types: `bool`, default is True, using pretrained weights
**Parameters:**
***image***: *towhee._types.Image*
​ The input image.
**Returns:**: *numpy.ndarray*
​ The extracted facial landmark.
## Code Example
extracted facial landmark from './img1.jpg'.
*Write the pipeline in simplified style*:
```python
import towhee.DataCollection as dc
dc.glob('./img1.jpg')
.face_landmark_detection.mobilefacenet()
.to_list()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee.DataCollection as dc
dc.glob['path']('./img1.jpg')
.image_decode.cv2['path', 'img']()
.face_landmark_detection.mobilefacenet()
.to_list()
```
## Reference
[1].https://arxiv.org/pdf/1804.07573.pdf