blip
copied
wxywb
2 years ago
15 changed files with 1725 additions and 1 deletions
@ -1,2 +1,107 @@ |
|||
# blip |
|||
# Image-Text Retrieval Embdding with BLIP |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for image or text with [BLIP](https://arxiv.org/abs/2201.12086) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP). |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './teddy.jpg' to generate an image embedding. |
|||
|
|||
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob('./teddy.jpg') \ |
|||
.image_decode() \ |
|||
.image_text_embedding.blip(model_name='blip_base', modality='image') \ |
|||
.show() |
|||
|
|||
towhee.dc(["A teddybear on a skateboard in Times Square."]) \ |
|||
.image_text_embedding.blip(model_name='blip_base', modality='text') \ |
|||
.show() |
|||
``` |
|||
<img src="https://towhee.io/image-text-embedding/blip/raw/branch/main/vec1.png" alt="result1" style="height:20px;"/> |
|||
<img src="https://towhee.io/image-text-embedding/blip/raw/branch/main/vec2.png" alt="result2" style="height:20px;"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob['path']('./teddy.jpg') \ |
|||
.image_decode['path', 'img']() \ |
|||
.image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \ |
|||
.select['img', 'vec']() \ |
|||
.show() |
|||
|
|||
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \ |
|||
.image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \ |
|||
.select['text', 'vec']() \ |
|||
.show() |
|||
``` |
|||
<img src="https://towhee.io/image-text-embedding/blip/raw/branch/main/tabular1.png" alt="result1" style="height:60px;"/> |
|||
<img src="https://towhee.io/image-text-embedding/blip/raw/branch/main/tabular2.png" alt="result2" style="height:60px;"/> |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***blip(model_name, modality)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name:*** *str* |
|||
|
|||
The model name of BLIP. Supported model names: |
|||
- blip_base |
|||
|
|||
|
|||
***modality:*** *str* |
|||
|
|||
Which modality(*image* or *text*) is used to generate the embedding. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
|||
|
|||
The data (image or text based on specified modality) to generate embedding. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The data embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .blip import Blip |
|||
|
|||
|
|||
def blip(model_name: str, modality: str): |
|||
return Blip(model_name, modality) |
@ -0,0 +1,72 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import sys |
|||
from pathlib import Path |
|||
|
|||
import torch |
|||
from torchvision import transforms |
|||
from torchvision.transforms.functional import InterpolationMode |
|||
|
|||
from towhee import register |
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee.types.arg import arg, to_image_color |
|||
from towhee.types.image_utils import from_pil, to_pil |
|||
|
|||
@register(output_schema=['vec']) |
|||
class Blip(NNOperator): |
|||
""" |
|||
BLIP multi-modal embedding operator |
|||
""" |
|||
def __init__(self, model_name: str): |
|||
super().__init__() |
|||
sys.path.append(str(Path(__file__).parent)) |
|||
from models.blip import blip_decoder |
|||
image_size = 384 |
|||
model_url = self._configs()[model_name]['weights'] |
|||
self.model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base') |
|||
|
|||
self._modality = modality |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.model.to(self.device) |
|||
self.model.eval() |
|||
|
|||
self.tfms = transforms.Compose([ |
|||
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), |
|||
transforms.ToTensor(), |
|||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|||
]) |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def __call__(self, data:): |
|||
vec = self._inference_from_image(data) |
|||
return vec |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def _inference_from_image(self, img): |
|||
img = self._preprocess(img) |
|||
caption = model.generate(img, sample=False, num_beams=3, max_length=20, min_length=5) |
|||
return caption[0] |
|||
|
|||
def _preprocess(self, img): |
|||
img = to_pil(img) |
|||
processed_img = self.tfms(img).unsqueeze(0).to(self.device) |
|||
return processed_img |
|||
|
|||
def _configs(self): |
|||
config = {} |
|||
config['blip_base'] = {} |
|||
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' |
|||
return config |
|||
|
@ -0,0 +1,22 @@ |
|||
{ |
|||
"architectures": [ |
|||
"BertModel" |
|||
], |
|||
"attention_probs_dropout_prob": 0.1, |
|||
"hidden_act": "gelu", |
|||
"hidden_dropout_prob": 0.1, |
|||
"hidden_size": 768, |
|||
"initializer_range": 0.02, |
|||
"intermediate_size": 3072, |
|||
"layer_norm_eps": 1e-12, |
|||
"max_position_embeddings": 512, |
|||
"model_type": "bert", |
|||
"num_attention_heads": 12, |
|||
"num_hidden_layers": 12, |
|||
"pad_token_id": 0, |
|||
"type_vocab_size": 2, |
|||
"vocab_size": 30524, |
|||
"encoder_width": 768, |
|||
"add_cross_attention": true |
|||
} |
|||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,240 @@ |
|||
''' |
|||
* Copyright (c) 2022, salesforce.com, inc. |
|||
* All rights reserved. |
|||
* SPDX-License-Identifier: BSD-3-Clause |
|||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|||
* By Junnan Li |
|||
''' |
|||
import warnings |
|||
warnings.filterwarnings("ignore") |
|||
|
|||
from models.vit import VisionTransformer, interpolate_pos_embed |
|||
from models.med import BertConfig, BertModel, BertLMHeadModel |
|||
from transformers import BertTokenizer |
|||
|
|||
import torch |
|||
from torch import nn |
|||
from pathlib import Path |
|||
import torch.nn.functional as F |
|||
|
|||
import os |
|||
from urllib.parse import urlparse |
|||
from timm.models.hub import download_cached_file |
|||
|
|||
class BLIP_Base(nn.Module): |
|||
def __init__(self, |
|||
med_config = 'configs/med_config.json', |
|||
image_size = 224, |
|||
vit = 'base', |
|||
vit_grad_ckpt = False, |
|||
vit_ckpt_layer = 0, |
|||
): |
|||
""" |
|||
Args: |
|||
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|||
image_size (int): input image size |
|||
vit (str): model size of vision transformer |
|||
""" |
|||
super().__init__() |
|||
dirpath = str(Path(__file__).parent.parent) |
|||
med_config = dirpath + '/' + med_config |
|||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|||
self.tokenizer = init_tokenizer() |
|||
med_config = BertConfig.from_json_file(med_config) |
|||
med_config.encoder_width = vision_width |
|||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|||
|
|||
|
|||
def forward(self, image, caption, mode, device): |
|||
|
|||
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal" |
|||
text = self.tokenizer(caption, return_tensors="pt").to(device) |
|||
|
|||
if mode=='image': |
|||
# return image features |
|||
image_embeds = self.visual_encoder(image) |
|||
return image_embeds |
|||
|
|||
elif mode=='text': |
|||
# return text features |
|||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, |
|||
return_dict = True, mode = 'text') |
|||
return text_output.last_hidden_state |
|||
|
|||
elif mode=='multimodal': |
|||
# return multimodel features |
|||
image_embeds = self.visual_encoder(image) |
|||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(device) |
|||
|
|||
text.input_ids[:,0] = self.tokenizer.enc_token_id |
|||
output = self.text_encoder(text.input_ids, |
|||
attention_mask = text.attention_mask, |
|||
encoder_hidden_states = image_embeds, |
|||
encoder_attention_mask = image_atts, |
|||
return_dict = True, |
|||
) |
|||
return output.last_hidden_state |
|||
|
|||
|
|||
|
|||
class BLIP_Decoder(nn.Module): |
|||
def __init__(self, |
|||
med_config = 'configs/med_config.json', |
|||
image_size = 384, |
|||
vit = 'base', |
|||
vit_grad_ckpt = False, |
|||
vit_ckpt_layer = 0, |
|||
prompt = 'a picture of ', |
|||
): |
|||
""" |
|||
Args: |
|||
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|||
image_size (int): input image size |
|||
vit (str): model size of vision transformer |
|||
""" |
|||
super().__init__() |
|||
|
|||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|||
self.tokenizer = init_tokenizer() |
|||
med_config = BertConfig.from_json_file(med_config) |
|||
med_config.encoder_width = vision_width |
|||
self.text_decoder = BertLMHeadModel(config=med_config) |
|||
|
|||
self.prompt = prompt |
|||
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 |
|||
|
|||
|
|||
def forward(self, image, caption): |
|||
|
|||
image_embeds = self.visual_encoder(image) |
|||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|||
|
|||
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) |
|||
|
|||
text.input_ids[:,0] = self.tokenizer.bos_token_id |
|||
|
|||
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100) |
|||
decoder_targets[:,:self.prompt_length] = -100 |
|||
|
|||
decoder_output = self.text_decoder(text.input_ids, |
|||
attention_mask = text.attention_mask, |
|||
encoder_hidden_states = image_embeds, |
|||
encoder_attention_mask = image_atts, |
|||
labels = decoder_targets, |
|||
return_dict = True, |
|||
) |
|||
loss_lm = decoder_output.loss |
|||
|
|||
return loss_lm |
|||
|
|||
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0): |
|||
image_embeds = self.visual_encoder(image) |
|||
|
|||
if not sample: |
|||
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) |
|||
|
|||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|||
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts} |
|||
|
|||
prompt = [self.prompt] * image.size(0) |
|||
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) |
|||
input_ids[:,0] = self.tokenizer.bos_token_id |
|||
input_ids = input_ids[:, :-1] |
|||
|
|||
if sample: |
|||
#nucleus sampling |
|||
outputs = self.text_decoder.generate(input_ids=input_ids, |
|||
max_length=max_length, |
|||
min_length=min_length, |
|||
do_sample=True, |
|||
top_p=top_p, |
|||
num_return_sequences=1, |
|||
eos_token_id=self.tokenizer.sep_token_id, |
|||
pad_token_id=self.tokenizer.pad_token_id, |
|||
repetition_penalty=1.1, |
|||
**model_kwargs) |
|||
else: |
|||
#beam search |
|||
outputs = self.text_decoder.generate(input_ids=input_ids, |
|||
max_length=max_length, |
|||
min_length=min_length, |
|||
num_beams=num_beams, |
|||
eos_token_id=self.tokenizer.sep_token_id, |
|||
pad_token_id=self.tokenizer.pad_token_id, |
|||
repetition_penalty=repetition_penalty, |
|||
**model_kwargs) |
|||
|
|||
captions = [] |
|||
for output in outputs: |
|||
caption = self.tokenizer.decode(output, skip_special_tokens=True) |
|||
captions.append(caption[len(self.prompt):]) |
|||
return captions |
|||
|
|||
|
|||
def blip_decoder(pretrained='',**kwargs): |
|||
model = BLIP_Decoder(**kwargs) |
|||
if pretrained: |
|||
model,msg = load_checkpoint(model,pretrained) |
|||
assert(len(msg.missing_keys)==0) |
|||
return model |
|||
|
|||
def blip_feature_extractor(pretrained='',**kwargs): |
|||
model = BLIP_Base(**kwargs) |
|||
if pretrained: |
|||
model,msg = load_checkpoint(model,pretrained) |
|||
assert(len(msg.missing_keys)==0) |
|||
return model |
|||
|
|||
def init_tokenizer(): |
|||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|||
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) |
|||
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) |
|||
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] |
|||
return tokenizer |
|||
|
|||
|
|||
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): |
|||
|
|||
assert vit in ['base', 'large'], "vit parameter must be base or large" |
|||
if vit=='base': |
|||
vision_width = 768 |
|||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, |
|||
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|||
drop_path_rate=0 or drop_path_rate |
|||
) |
|||
elif vit=='large': |
|||
vision_width = 1024 |
|||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, |
|||
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|||
drop_path_rate=0.1 or drop_path_rate |
|||
) |
|||
return visual_encoder, vision_width |
|||
|
|||
def is_url(url_or_filename): |
|||
parsed = urlparse(url_or_filename) |
|||
return parsed.scheme in ("http", "https") |
|||
|
|||
def load_checkpoint(model,url_or_filename): |
|||
if is_url(url_or_filename): |
|||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|||
checkpoint = torch.load(cached_file, map_location='cpu') |
|||
elif os.path.isfile(url_or_filename): |
|||
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|||
else: |
|||
raise RuntimeError('checkpoint url or path is invalid') |
|||
|
|||
state_dict = checkpoint['model'] |
|||
|
|||
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) |
|||
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): |
|||
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], |
|||
model.visual_encoder_m) |
|||
for key in model.state_dict().keys(): |
|||
if key in state_dict.keys(): |
|||
if state_dict[key].shape!=model.state_dict()[key].shape: |
|||
del state_dict[key] |
|||
|
|||
msg = model.load_state_dict(state_dict,strict=False) |
|||
print('load checkpoint from %s'%url_or_filename) |
|||
return model,msg |
|||
|
@ -0,0 +1,955 @@ |
|||
''' |
|||
* Copyright (c) 2022, salesforce.com, inc. |
|||
* All rights reserved. |
|||
* SPDX-License-Identifier: BSD-3-Clause |
|||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|||
* By Junnan Li |
|||
* Based on huggingface code base |
|||
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert |
|||
''' |
|||
|
|||
import math |
|||
import os |
|||
import warnings |
|||
from dataclasses import dataclass |
|||
from typing import Optional, Tuple |
|||
|
|||
import torch |
|||
from torch import Tensor, device, dtype, nn |
|||
import torch.utils.checkpoint |
|||
from torch import nn |
|||
from torch.nn import CrossEntropyLoss |
|||
import torch.nn.functional as F |
|||
|
|||
from transformers.activations import ACT2FN |
|||
from transformers.file_utils import ( |
|||
ModelOutput, |
|||
) |
|||
from transformers.modeling_outputs import ( |
|||
BaseModelOutputWithPastAndCrossAttentions, |
|||
BaseModelOutputWithPoolingAndCrossAttentions, |
|||
CausalLMOutputWithCrossAttentions, |
|||
MaskedLMOutput, |
|||
MultipleChoiceModelOutput, |
|||
NextSentencePredictorOutput, |
|||
QuestionAnsweringModelOutput, |
|||
SequenceClassifierOutput, |
|||
TokenClassifierOutput, |
|||
) |
|||
from transformers.modeling_utils import ( |
|||
PreTrainedModel, |
|||
apply_chunking_to_forward, |
|||
find_pruneable_heads_and_indices, |
|||
prune_linear_layer, |
|||
) |
|||
from transformers.utils import logging |
|||
from transformers.models.bert.configuration_bert import BertConfig |
|||
|
|||
|
|||
logger = logging.get_logger(__name__) |
|||
|
|||
|
|||
class BertEmbeddings(nn.Module): |
|||
"""Construct the embeddings from word and position embeddings.""" |
|||
|
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|||
|
|||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load |
|||
# any TensorFlow checkpoint file |
|||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|||
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|||
|
|||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized |
|||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|||
|
|||
self.config = config |
|||
|
|||
def forward( |
|||
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|||
): |
|||
if input_ids is not None: |
|||
input_shape = input_ids.size() |
|||
else: |
|||
input_shape = inputs_embeds.size()[:-1] |
|||
|
|||
seq_length = input_shape[1] |
|||
|
|||
if position_ids is None: |
|||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|||
|
|||
if inputs_embeds is None: |
|||
inputs_embeds = self.word_embeddings(input_ids) |
|||
|
|||
embeddings = inputs_embeds |
|||
|
|||
if self.position_embedding_type == "absolute": |
|||
position_embeddings = self.position_embeddings(position_ids) |
|||
embeddings += position_embeddings |
|||
embeddings = self.LayerNorm(embeddings) |
|||
embeddings = self.dropout(embeddings) |
|||
return embeddings |
|||
|
|||
|
|||
class BertSelfAttention(nn.Module): |
|||
def __init__(self, config, is_cross_attention): |
|||
super().__init__() |
|||
self.config = config |
|||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|||
raise ValueError( |
|||
"The hidden size (%d) is not a multiple of the number of attention " |
|||
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|||
) |
|||
|
|||
self.num_attention_heads = config.num_attention_heads |
|||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|||
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|||
|
|||
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|||
if is_cross_attention: |
|||
self.key = nn.Linear(config.encoder_width, self.all_head_size) |
|||
self.value = nn.Linear(config.encoder_width, self.all_head_size) |
|||
else: |
|||
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|||
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|||
|
|||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|||
self.max_position_embeddings = config.max_position_embeddings |
|||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|||
self.save_attention = False |
|||
|
|||
def save_attn_gradients(self, attn_gradients): |
|||
self.attn_gradients = attn_gradients |
|||
|
|||
def get_attn_gradients(self): |
|||
return self.attn_gradients |
|||
|
|||
def save_attention_map(self, attention_map): |
|||
self.attention_map = attention_map |
|||
|
|||
def get_attention_map(self): |
|||
return self.attention_map |
|||
|
|||
def transpose_for_scores(self, x): |
|||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|||
x = x.view(*new_x_shape) |
|||
return x.permute(0, 2, 1, 3) |
|||
|
|||
def forward( |
|||
self, |
|||
hidden_states, |
|||
attention_mask=None, |
|||
head_mask=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
past_key_value=None, |
|||
output_attentions=False, |
|||
): |
|||
mixed_query_layer = self.query(hidden_states) |
|||
|
|||
# If this is instantiated as a cross-attention module, the keys |
|||
# and values come from an encoder; the attention mask needs to be |
|||
# such that the encoder's padding tokens are not attended to. |
|||
is_cross_attention = encoder_hidden_states is not None |
|||
|
|||
if is_cross_attention: |
|||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|||
attention_mask = encoder_attention_mask |
|||
elif past_key_value is not None: |
|||
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|||
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|||
else: |
|||
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|||
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|||
|
|||
query_layer = self.transpose_for_scores(mixed_query_layer) |
|||
|
|||
past_key_value = (key_layer, value_layer) |
|||
|
|||
# Take the dot product between "query" and "key" to get the raw attention scores. |
|||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|||
|
|||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|||
seq_length = hidden_states.size()[1] |
|||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|||
distance = position_ids_l - position_ids_r |
|||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility |
|||
|
|||
if self.position_embedding_type == "relative_key": |
|||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|||
attention_scores = attention_scores + relative_position_scores |
|||
elif self.position_embedding_type == "relative_key_query": |
|||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|||
|
|||
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|||
if attention_mask is not None: |
|||
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) |
|||
attention_scores = attention_scores + attention_mask |
|||
|
|||
# Normalize the attention scores to probabilities. |
|||
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|||
|
|||
if is_cross_attention and self.save_attention: |
|||
self.save_attention_map(attention_probs) |
|||
attention_probs.register_hook(self.save_attn_gradients) |
|||
|
|||
# This is actually dropping out entire tokens to attend to, which might |
|||
# seem a bit unusual, but is taken from the original Transformer paper. |
|||
attention_probs_dropped = self.dropout(attention_probs) |
|||
|
|||
# Mask heads if we want to |
|||
if head_mask is not None: |
|||
attention_probs_dropped = attention_probs_dropped * head_mask |
|||
|
|||
context_layer = torch.matmul(attention_probs_dropped, value_layer) |
|||
|
|||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|||
context_layer = context_layer.view(*new_context_layer_shape) |
|||
|
|||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|||
|
|||
outputs = outputs + (past_key_value,) |
|||
return outputs |
|||
|
|||
|
|||
class BertSelfOutput(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|||
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|||
|
|||
def forward(self, hidden_states, input_tensor): |
|||
hidden_states = self.dense(hidden_states) |
|||
hidden_states = self.dropout(hidden_states) |
|||
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|||
return hidden_states |
|||
|
|||
|
|||
class BertAttention(nn.Module): |
|||
def __init__(self, config, is_cross_attention=False): |
|||
super().__init__() |
|||
self.self = BertSelfAttention(config, is_cross_attention) |
|||
self.output = BertSelfOutput(config) |
|||
self.pruned_heads = set() |
|||
|
|||
def prune_heads(self, heads): |
|||
if len(heads) == 0: |
|||
return |
|||
heads, index = find_pruneable_heads_and_indices( |
|||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|||
) |
|||
|
|||
# Prune linear layers |
|||
self.self.query = prune_linear_layer(self.self.query, index) |
|||
self.self.key = prune_linear_layer(self.self.key, index) |
|||
self.self.value = prune_linear_layer(self.self.value, index) |
|||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|||
|
|||
# Update hyper params and store pruned heads |
|||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|||
self.pruned_heads = self.pruned_heads.union(heads) |
|||
|
|||
def forward( |
|||
self, |
|||
hidden_states, |
|||
attention_mask=None, |
|||
head_mask=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
past_key_value=None, |
|||
output_attentions=False, |
|||
): |
|||
self_outputs = self.self( |
|||
hidden_states, |
|||
attention_mask, |
|||
head_mask, |
|||
encoder_hidden_states, |
|||
encoder_attention_mask, |
|||
past_key_value, |
|||
output_attentions, |
|||
) |
|||
attention_output = self.output(self_outputs[0], hidden_states) |
|||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them |
|||
return outputs |
|||
|
|||
|
|||
class BertIntermediate(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|||
if isinstance(config.hidden_act, str): |
|||
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|||
else: |
|||
self.intermediate_act_fn = config.hidden_act |
|||
|
|||
def forward(self, hidden_states): |
|||
hidden_states = self.dense(hidden_states) |
|||
hidden_states = self.intermediate_act_fn(hidden_states) |
|||
return hidden_states |
|||
|
|||
|
|||
class BertOutput(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|||
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|||
|
|||
def forward(self, hidden_states, input_tensor): |
|||
hidden_states = self.dense(hidden_states) |
|||
hidden_states = self.dropout(hidden_states) |
|||
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|||
return hidden_states |
|||
|
|||
|
|||
class BertLayer(nn.Module): |
|||
def __init__(self, config, layer_num): |
|||
super().__init__() |
|||
self.config = config |
|||
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|||
self.seq_len_dim = 1 |
|||
self.attention = BertAttention(config) |
|||
self.layer_num = layer_num |
|||
if self.config.add_cross_attention: |
|||
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention) |
|||
self.intermediate = BertIntermediate(config) |
|||
self.output = BertOutput(config) |
|||
|
|||
def forward( |
|||
self, |
|||
hidden_states, |
|||
attention_mask=None, |
|||
head_mask=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
past_key_value=None, |
|||
output_attentions=False, |
|||
mode=None, |
|||
): |
|||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 |
|||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|||
self_attention_outputs = self.attention( |
|||
hidden_states, |
|||
attention_mask, |
|||
head_mask, |
|||
output_attentions=output_attentions, |
|||
past_key_value=self_attn_past_key_value, |
|||
) |
|||
attention_output = self_attention_outputs[0] |
|||
|
|||
outputs = self_attention_outputs[1:-1] |
|||
present_key_value = self_attention_outputs[-1] |
|||
|
|||
if mode=='multimodal': |
|||
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers" |
|||
|
|||
cross_attention_outputs = self.crossattention( |
|||
attention_output, |
|||
attention_mask, |
|||
head_mask, |
|||
encoder_hidden_states, |
|||
encoder_attention_mask, |
|||
output_attentions=output_attentions, |
|||
) |
|||
attention_output = cross_attention_outputs[0] |
|||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights |
|||
layer_output = apply_chunking_to_forward( |
|||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|||
) |
|||
outputs = (layer_output,) + outputs |
|||
|
|||
outputs = outputs + (present_key_value,) |
|||
|
|||
return outputs |
|||
|
|||
def feed_forward_chunk(self, attention_output): |
|||
intermediate_output = self.intermediate(attention_output) |
|||
layer_output = self.output(intermediate_output, attention_output) |
|||
return layer_output |
|||
|
|||
|
|||
class BertEncoder(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.config = config |
|||
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)]) |
|||
self.gradient_checkpointing = False |
|||
|
|||
def forward( |
|||
self, |
|||
hidden_states, |
|||
attention_mask=None, |
|||
head_mask=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
past_key_values=None, |
|||
use_cache=None, |
|||
output_attentions=False, |
|||
output_hidden_states=False, |
|||
return_dict=True, |
|||
mode='multimodal', |
|||
): |
|||
all_hidden_states = () if output_hidden_states else None |
|||
all_self_attentions = () if output_attentions else None |
|||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|||
|
|||
next_decoder_cache = () if use_cache else None |
|||
|
|||
for i in range(self.config.num_hidden_layers): |
|||
layer_module = self.layer[i] |
|||
if output_hidden_states: |
|||
all_hidden_states = all_hidden_states + (hidden_states,) |
|||
|
|||
layer_head_mask = head_mask[i] if head_mask is not None else None |
|||
past_key_value = past_key_values[i] if past_key_values is not None else None |
|||
|
|||
if self.gradient_checkpointing and self.training: |
|||
|
|||
if use_cache: |
|||
logger.warn( |
|||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|||
) |
|||
use_cache = False |
|||
|
|||
def create_custom_forward(module): |
|||
def custom_forward(*inputs): |
|||
return module(*inputs, past_key_value, output_attentions) |
|||
|
|||
return custom_forward |
|||
|
|||
layer_outputs = torch.utils.checkpoint.checkpoint( |
|||
create_custom_forward(layer_module), |
|||
hidden_states, |
|||
attention_mask, |
|||
layer_head_mask, |
|||
encoder_hidden_states, |
|||
encoder_attention_mask, |
|||
mode=mode, |
|||
) |
|||
else: |
|||
layer_outputs = layer_module( |
|||
hidden_states, |
|||
attention_mask, |
|||
layer_head_mask, |
|||
encoder_hidden_states, |
|||
encoder_attention_mask, |
|||
past_key_value, |
|||
output_attentions, |
|||
mode=mode, |
|||
) |
|||
|
|||
hidden_states = layer_outputs[0] |
|||
if use_cache: |
|||
next_decoder_cache += (layer_outputs[-1],) |
|||
if output_attentions: |
|||
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|||
|
|||
if output_hidden_states: |
|||
all_hidden_states = all_hidden_states + (hidden_states,) |
|||
|
|||
if not return_dict: |
|||
return tuple( |
|||
v |
|||
for v in [ |
|||
hidden_states, |
|||
next_decoder_cache, |
|||
all_hidden_states, |
|||
all_self_attentions, |
|||
all_cross_attentions, |
|||
] |
|||
if v is not None |
|||
) |
|||
return BaseModelOutputWithPastAndCrossAttentions( |
|||
last_hidden_state=hidden_states, |
|||
past_key_values=next_decoder_cache, |
|||
hidden_states=all_hidden_states, |
|||
attentions=all_self_attentions, |
|||
cross_attentions=all_cross_attentions, |
|||
) |
|||
|
|||
|
|||
class BertPooler(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|||
self.activation = nn.Tanh() |
|||
|
|||
def forward(self, hidden_states): |
|||
# We "pool" the model by simply taking the hidden state corresponding |
|||
# to the first token. |
|||
first_token_tensor = hidden_states[:, 0] |
|||
pooled_output = self.dense(first_token_tensor) |
|||
pooled_output = self.activation(pooled_output) |
|||
return pooled_output |
|||
|
|||
|
|||
class BertPredictionHeadTransform(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|||
if isinstance(config.hidden_act, str): |
|||
self.transform_act_fn = ACT2FN[config.hidden_act] |
|||
else: |
|||
self.transform_act_fn = config.hidden_act |
|||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|||
|
|||
def forward(self, hidden_states): |
|||
hidden_states = self.dense(hidden_states) |
|||
hidden_states = self.transform_act_fn(hidden_states) |
|||
hidden_states = self.LayerNorm(hidden_states) |
|||
return hidden_states |
|||
|
|||
|
|||
class BertLMPredictionHead(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.transform = BertPredictionHeadTransform(config) |
|||
|
|||
# The output weights are the same as the input embeddings, but there is |
|||
# an output-only bias for each token. |
|||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|||
|
|||
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|||
|
|||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` |
|||
self.decoder.bias = self.bias |
|||
|
|||
def forward(self, hidden_states): |
|||
hidden_states = self.transform(hidden_states) |
|||
hidden_states = self.decoder(hidden_states) |
|||
return hidden_states |
|||
|
|||
|
|||
class BertOnlyMLMHead(nn.Module): |
|||
def __init__(self, config): |
|||
super().__init__() |
|||
self.predictions = BertLMPredictionHead(config) |
|||
|
|||
def forward(self, sequence_output): |
|||
prediction_scores = self.predictions(sequence_output) |
|||
return prediction_scores |
|||
|
|||
|
|||
class BertPreTrainedModel(PreTrainedModel): |
|||
""" |
|||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|||
models. |
|||
""" |
|||
|
|||
config_class = BertConfig |
|||
base_model_prefix = "bert" |
|||
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|||
|
|||
def _init_weights(self, module): |
|||
""" Initialize the weights """ |
|||
if isinstance(module, (nn.Linear, nn.Embedding)): |
|||
# Slightly different from the TF version which uses truncated_normal for initialization |
|||
# cf https://github.com/pytorch/pytorch/pull/5617 |
|||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|||
elif isinstance(module, nn.LayerNorm): |
|||
module.bias.data.zero_() |
|||
module.weight.data.fill_(1.0) |
|||
if isinstance(module, nn.Linear) and module.bias is not None: |
|||
module.bias.data.zero_() |
|||
|
|||
|
|||
class BertModel(BertPreTrainedModel): |
|||
""" |
|||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|||
cross-attention is added between the self-attention layers, following the architecture described in `Attention is |
|||
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|||
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an |
|||
input to the forward pass. |
|||
""" |
|||
|
|||
def __init__(self, config, add_pooling_layer=True): |
|||
super().__init__(config) |
|||
self.config = config |
|||
|
|||
self.embeddings = BertEmbeddings(config) |
|||
|
|||
self.encoder = BertEncoder(config) |
|||
|
|||
self.pooler = BertPooler(config) if add_pooling_layer else None |
|||
|
|||
self.init_weights() |
|||
|
|||
|
|||
def get_input_embeddings(self): |
|||
return self.embeddings.word_embeddings |
|||
|
|||
def set_input_embeddings(self, value): |
|||
self.embeddings.word_embeddings = value |
|||
|
|||
def _prune_heads(self, heads_to_prune): |
|||
""" |
|||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|||
class PreTrainedModel |
|||
""" |
|||
for layer, heads in heads_to_prune.items(): |
|||
self.encoder.layer[layer].attention.prune_heads(heads) |
|||
|
|||
|
|||
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: |
|||
""" |
|||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|||
|
|||
Arguments: |
|||
attention_mask (:obj:`torch.Tensor`): |
|||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|||
input_shape (:obj:`Tuple[int]`): |
|||
The shape of the input to the model. |
|||
device: (:obj:`torch.device`): |
|||
The device of the input to the model. |
|||
|
|||
Returns: |
|||
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. |
|||
""" |
|||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] |
|||
# ourselves in which case we just need to make it broadcastable to all heads. |
|||
if attention_mask.dim() == 3: |
|||
extended_attention_mask = attention_mask[:, None, :, :] |
|||
elif attention_mask.dim() == 2: |
|||
# Provided a padding mask of dimensions [batch_size, seq_length] |
|||
# - if the model is a decoder, apply a causal mask in addition to the padding mask |
|||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|||
if is_decoder: |
|||
batch_size, seq_length = input_shape |
|||
|
|||
seq_ids = torch.arange(seq_length, device=device) |
|||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] |
|||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask |
|||
# causal and attention masks must have same type with pytorch version < 1.3 |
|||
causal_mask = causal_mask.to(attention_mask.dtype) |
|||
|
|||
if causal_mask.shape[1] < attention_mask.shape[1]: |
|||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] |
|||
causal_mask = torch.cat( |
|||
[ |
|||
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), |
|||
causal_mask, |
|||
], |
|||
axis=-1, |
|||
) |
|||
|
|||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] |
|||
else: |
|||
extended_attention_mask = attention_mask[:, None, None, :] |
|||
else: |
|||
raise ValueError( |
|||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|||
input_shape, attention_mask.shape |
|||
) |
|||
) |
|||
|
|||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for |
|||
# masked positions, this operation will create a tensor which is 0.0 for |
|||
# positions we want to attend and -10000.0 for masked positions. |
|||
# Since we are adding it to the raw scores before the softmax, this is |
|||
# effectively the same as removing these entirely. |
|||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility |
|||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|||
return extended_attention_mask |
|||
|
|||
def forward( |
|||
self, |
|||
input_ids=None, |
|||
attention_mask=None, |
|||
position_ids=None, |
|||
head_mask=None, |
|||
inputs_embeds=None, |
|||
encoder_embeds=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
past_key_values=None, |
|||
use_cache=None, |
|||
output_attentions=None, |
|||
output_hidden_states=None, |
|||
return_dict=None, |
|||
is_decoder=False, |
|||
mode='multimodal', |
|||
): |
|||
r""" |
|||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|||
the model is configured as a decoder. |
|||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|||
- 1 for tokens that are **not masked**, |
|||
- 0 for tokens that are **masked**. |
|||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|||
use_cache (:obj:`bool`, `optional`): |
|||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|||
decoding (see :obj:`past_key_values`). |
|||
""" |
|||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|||
output_hidden_states = ( |
|||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|||
) |
|||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|||
|
|||
if is_decoder: |
|||
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|||
else: |
|||
use_cache = False |
|||
|
|||
if input_ids is not None and inputs_embeds is not None: |
|||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|||
elif input_ids is not None: |
|||
input_shape = input_ids.size() |
|||
batch_size, seq_length = input_shape |
|||
device = input_ids.device |
|||
elif inputs_embeds is not None: |
|||
input_shape = inputs_embeds.size()[:-1] |
|||
batch_size, seq_length = input_shape |
|||
device = inputs_embeds.device |
|||
elif encoder_embeds is not None: |
|||
input_shape = encoder_embeds.size()[:-1] |
|||
batch_size, seq_length = input_shape |
|||
device = encoder_embeds.device |
|||
else: |
|||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") |
|||
|
|||
# past_key_values_length |
|||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|||
|
|||
if attention_mask is None: |
|||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|||
|
|||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] |
|||
# ourselves in which case we just need to make it broadcastable to all heads. |
|||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, |
|||
device, is_decoder) |
|||
|
|||
# If a 2D or 3D attention mask is provided for the cross-attention |
|||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|||
if encoder_hidden_states is not None: |
|||
if type(encoder_hidden_states) == list: |
|||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() |
|||
else: |
|||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|||
|
|||
if type(encoder_attention_mask) == list: |
|||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] |
|||
elif encoder_attention_mask is None: |
|||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|||
else: |
|||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|||
else: |
|||
encoder_extended_attention_mask = None |
|||
|
|||
# Prepare head mask if needed |
|||
# 1.0 in head_mask indicate we keep the head |
|||
# attention_probs has shape bsz x n_heads x N x N |
|||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] |
|||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] |
|||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|||
|
|||
if encoder_embeds is None: |
|||
embedding_output = self.embeddings( |
|||
input_ids=input_ids, |
|||
position_ids=position_ids, |
|||
inputs_embeds=inputs_embeds, |
|||
past_key_values_length=past_key_values_length, |
|||
) |
|||
else: |
|||
embedding_output = encoder_embeds |
|||
|
|||
encoder_outputs = self.encoder( |
|||
embedding_output, |
|||
attention_mask=extended_attention_mask, |
|||
head_mask=head_mask, |
|||
encoder_hidden_states=encoder_hidden_states, |
|||
encoder_attention_mask=encoder_extended_attention_mask, |
|||
past_key_values=past_key_values, |
|||
use_cache=use_cache, |
|||
output_attentions=output_attentions, |
|||
output_hidden_states=output_hidden_states, |
|||
return_dict=return_dict, |
|||
mode=mode, |
|||
) |
|||
sequence_output = encoder_outputs[0] |
|||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|||
|
|||
if not return_dict: |
|||
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|||
|
|||
return BaseModelOutputWithPoolingAndCrossAttentions( |
|||
last_hidden_state=sequence_output, |
|||
pooler_output=pooled_output, |
|||
past_key_values=encoder_outputs.past_key_values, |
|||
hidden_states=encoder_outputs.hidden_states, |
|||
attentions=encoder_outputs.attentions, |
|||
cross_attentions=encoder_outputs.cross_attentions, |
|||
) |
|||
|
|||
|
|||
|
|||
class BertLMHeadModel(BertPreTrainedModel): |
|||
|
|||
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|||
|
|||
def __init__(self, config): |
|||
super().__init__(config) |
|||
|
|||
self.bert = BertModel(config, add_pooling_layer=False) |
|||
self.cls = BertOnlyMLMHead(config) |
|||
|
|||
self.init_weights() |
|||
|
|||
def get_output_embeddings(self): |
|||
return self.cls.predictions.decoder |
|||
|
|||
def set_output_embeddings(self, new_embeddings): |
|||
self.cls.predictions.decoder = new_embeddings |
|||
|
|||
def forward( |
|||
self, |
|||
input_ids=None, |
|||
attention_mask=None, |
|||
position_ids=None, |
|||
head_mask=None, |
|||
inputs_embeds=None, |
|||
encoder_hidden_states=None, |
|||
encoder_attention_mask=None, |
|||
labels=None, |
|||
past_key_values=None, |
|||
use_cache=None, |
|||
output_attentions=None, |
|||
output_hidden_states=None, |
|||
return_dict=None, |
|||
return_logits=False, |
|||
is_decoder=True, |
|||
reduction='mean', |
|||
mode='multimodal', |
|||
): |
|||
r""" |
|||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|||
the model is configured as a decoder. |
|||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|||
- 1 for tokens that are **not masked**, |
|||
- 0 for tokens that are **masked**. |
|||
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|||
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are |
|||
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` |
|||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|||
use_cache (:obj:`bool`, `optional`): |
|||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|||
decoding (see :obj:`past_key_values`). |
|||
Returns: |
|||
Example:: |
|||
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig |
|||
>>> import torch |
|||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') |
|||
>>> config = BertConfig.from_pretrained("bert-base-cased") |
|||
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) |
|||
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|||
>>> outputs = model(**inputs) |
|||
>>> prediction_logits = outputs.logits |
|||
""" |
|||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|||
if labels is not None: |
|||
use_cache = False |
|||
|
|||
outputs = self.bert( |
|||
input_ids, |
|||
attention_mask=attention_mask, |
|||
position_ids=position_ids, |
|||
head_mask=head_mask, |
|||
inputs_embeds=inputs_embeds, |
|||
encoder_hidden_states=encoder_hidden_states, |
|||
encoder_attention_mask=encoder_attention_mask, |
|||
past_key_values=past_key_values, |
|||
use_cache=use_cache, |
|||
output_attentions=output_attentions, |
|||
output_hidden_states=output_hidden_states, |
|||
return_dict=return_dict, |
|||
is_decoder=is_decoder, |
|||
mode=mode, |
|||
) |
|||
|
|||
sequence_output = outputs[0] |
|||
prediction_scores = self.cls(sequence_output) |
|||
|
|||
if return_logits: |
|||
return prediction_scores[:, :-1, :].contiguous() |
|||
|
|||
lm_loss = None |
|||
if labels is not None: |
|||
# we are doing next-token prediction; shift prediction scores and input ids by one |
|||
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|||
labels = labels[:, 1:].contiguous() |
|||
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) |
|||
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|||
if reduction=='none': |
|||
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1) |
|||
|
|||
if not return_dict: |
|||
output = (prediction_scores,) + outputs[2:] |
|||
return ((lm_loss,) + output) if lm_loss is not None else output |
|||
|
|||
return CausalLMOutputWithCrossAttentions( |
|||
loss=lm_loss, |
|||
logits=prediction_scores, |
|||
past_key_values=outputs.past_key_values, |
|||
hidden_states=outputs.hidden_states, |
|||
attentions=outputs.attentions, |
|||
cross_attentions=outputs.cross_attentions, |
|||
) |
|||
|
|||
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): |
|||
input_shape = input_ids.shape |
|||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly |
|||
if attention_mask is None: |
|||
attention_mask = input_ids.new_ones(input_shape) |
|||
|
|||
# cut decoder_input_ids if past is used |
|||
if past is not None: |
|||
input_ids = input_ids[:, -1:] |
|||
|
|||
return { |
|||
"input_ids": input_ids, |
|||
"attention_mask": attention_mask, |
|||
"past_key_values": past, |
|||
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), |
|||
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), |
|||
"is_decoder": True, |
|||
} |
|||
|
|||
def _reorder_cache(self, past, beam_idx): |
|||
reordered_past = () |
|||
for layer_past in past: |
|||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|||
return reordered_past |
@ -0,0 +1,305 @@ |
|||
''' |
|||
* Copyright (c) 2022, salesforce.com, inc. |
|||
* All rights reserved. |
|||
* SPDX-License-Identifier: BSD-3-Clause |
|||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|||
* By Junnan Li |
|||
* Based on timm code base |
|||
* https://github.com/rwightman/pytorch-image-models/tree/master/timm |
|||
''' |
|||
|
|||
import torch |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
from functools import partial |
|||
|
|||
from timm.models.vision_transformer import _cfg, PatchEmbed |
|||
from timm.models.registry import register_model |
|||
from timm.models.layers import trunc_normal_, DropPath |
|||
from timm.models.helpers import named_apply, adapt_input_conv |
|||
|
|||
#from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper |
|||
|
|||
class Mlp(nn.Module): |
|||
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|||
""" |
|||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|||
super().__init__() |
|||
out_features = out_features or in_features |
|||
hidden_features = hidden_features or in_features |
|||
self.fc1 = nn.Linear(in_features, hidden_features) |
|||
self.act = act_layer() |
|||
self.fc2 = nn.Linear(hidden_features, out_features) |
|||
self.drop = nn.Dropout(drop) |
|||
|
|||
def forward(self, x): |
|||
x = self.fc1(x) |
|||
x = self.act(x) |
|||
x = self.drop(x) |
|||
x = self.fc2(x) |
|||
x = self.drop(x) |
|||
return x |
|||
|
|||
|
|||
class Attention(nn.Module): |
|||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|||
super().__init__() |
|||
self.num_heads = num_heads |
|||
head_dim = dim // num_heads |
|||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights |
|||
self.scale = qk_scale or head_dim ** -0.5 |
|||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|||
self.attn_drop = nn.Dropout(attn_drop) |
|||
self.proj = nn.Linear(dim, dim) |
|||
self.proj_drop = nn.Dropout(proj_drop) |
|||
self.attn_gradients = None |
|||
self.attention_map = None |
|||
|
|||
def save_attn_gradients(self, attn_gradients): |
|||
self.attn_gradients = attn_gradients |
|||
|
|||
def get_attn_gradients(self): |
|||
return self.attn_gradients |
|||
|
|||
def save_attention_map(self, attention_map): |
|||
self.attention_map = attention_map |
|||
|
|||
def get_attention_map(self): |
|||
return self.attention_map |
|||
|
|||
def forward(self, x, register_hook=False): |
|||
B, N, C = x.shape |
|||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) |
|||
|
|||
attn = (q @ k.transpose(-2, -1)) * self.scale |
|||
attn = attn.softmax(dim=-1) |
|||
attn = self.attn_drop(attn) |
|||
|
|||
if register_hook: |
|||
self.save_attention_map(attn) |
|||
attn.register_hook(self.save_attn_gradients) |
|||
|
|||
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|||
x = self.proj(x) |
|||
x = self.proj_drop(x) |
|||
return x |
|||
|
|||
|
|||
class Block(nn.Module): |
|||
|
|||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): |
|||
super().__init__() |
|||
self.norm1 = norm_layer(dim) |
|||
self.attn = Attention( |
|||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here |
|||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|||
self.norm2 = norm_layer(dim) |
|||
mlp_hidden_dim = int(dim * mlp_ratio) |
|||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|||
|
|||
#if use_grad_checkpointing: |
|||
# self.attn = checkpoint_wrapper(self.attn) |
|||
# self.mlp = checkpoint_wrapper(self.mlp) |
|||
|
|||
def forward(self, x, register_hook=False): |
|||
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) |
|||
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|||
return x |
|||
|
|||
|
|||
class VisionTransformer(nn.Module): |
|||
""" Vision Transformer |
|||
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - |
|||
https://arxiv.org/abs/2010.11929 |
|||
""" |
|||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, |
|||
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, |
|||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, |
|||
use_grad_checkpointing=False, ckpt_layer=0): |
|||
""" |
|||
Args: |
|||
img_size (int, tuple): input image size |
|||
patch_size (int, tuple): patch size |
|||
in_chans (int): number of input channels |
|||
num_classes (int): number of classes for classification head |
|||
embed_dim (int): embedding dimension |
|||
depth (int): depth of transformer |
|||
num_heads (int): number of attention heads |
|||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|||
qkv_bias (bool): enable bias for qkv if True |
|||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set |
|||
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set |
|||
drop_rate (float): dropout rate |
|||
attn_drop_rate (float): attention dropout rate |
|||
drop_path_rate (float): stochastic depth rate |
|||
norm_layer: (nn.Module): normalization layer |
|||
""" |
|||
super().__init__() |
|||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models |
|||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|||
|
|||
self.patch_embed = PatchEmbed( |
|||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|||
|
|||
num_patches = self.patch_embed.num_patches |
|||
|
|||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|||
self.pos_drop = nn.Dropout(p=drop_rate) |
|||
|
|||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule |
|||
self.blocks = nn.ModuleList([ |
|||
Block( |
|||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|||
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) |
|||
) |
|||
for i in range(depth)]) |
|||
self.norm = norm_layer(embed_dim) |
|||
|
|||
trunc_normal_(self.pos_embed, std=.02) |
|||
trunc_normal_(self.cls_token, std=.02) |
|||
self.apply(self._init_weights) |
|||
|
|||
def _init_weights(self, m): |
|||
if isinstance(m, nn.Linear): |
|||
trunc_normal_(m.weight, std=.02) |
|||
if isinstance(m, nn.Linear) and m.bias is not None: |
|||
nn.init.constant_(m.bias, 0) |
|||
elif isinstance(m, nn.LayerNorm): |
|||
nn.init.constant_(m.bias, 0) |
|||
nn.init.constant_(m.weight, 1.0) |
|||
|
|||
@torch.jit.ignore |
|||
def no_weight_decay(self): |
|||
return {'pos_embed', 'cls_token'} |
|||
|
|||
def forward(self, x, register_blk=-1): |
|||
B = x.shape[0] |
|||
x = self.patch_embed(x) |
|||
|
|||
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks |
|||
x = torch.cat((cls_tokens, x), dim=1) |
|||
|
|||
x = x + self.pos_embed[:,:x.size(1),:] |
|||
x = self.pos_drop(x) |
|||
|
|||
for i,blk in enumerate(self.blocks): |
|||
x = blk(x, register_blk==i) |
|||
x = self.norm(x) |
|||
|
|||
return x |
|||
|
|||
@torch.jit.ignore() |
|||
def load_pretrained(self, checkpoint_path, prefix=''): |
|||
_load_weights(self, checkpoint_path, prefix) |
|||
|
|||
|
|||
@torch.no_grad() |
|||
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): |
|||
""" Load weights from .npz checkpoints for official Google Brain Flax implementation |
|||
""" |
|||
import numpy as np |
|||
|
|||
def _n2p(w, t=True): |
|||
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: |
|||
w = w.flatten() |
|||
if t: |
|||
if w.ndim == 4: |
|||
w = w.transpose([3, 2, 0, 1]) |
|||
elif w.ndim == 3: |
|||
w = w.transpose([2, 0, 1]) |
|||
elif w.ndim == 2: |
|||
w = w.transpose([1, 0]) |
|||
return torch.from_numpy(w) |
|||
|
|||
w = np.load(checkpoint_path) |
|||
if not prefix and 'opt/target/embedding/kernel' in w: |
|||
prefix = 'opt/target/' |
|||
|
|||
if hasattr(model.patch_embed, 'backbone'): |
|||
# hybrid |
|||
backbone = model.patch_embed.backbone |
|||
stem_only = not hasattr(backbone, 'stem') |
|||
stem = backbone if stem_only else backbone.stem |
|||
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) |
|||
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) |
|||
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) |
|||
if not stem_only: |
|||
for i, stage in enumerate(backbone.stages): |
|||
for j, block in enumerate(stage.blocks): |
|||
bp = f'{prefix}block{i + 1}/unit{j + 1}/' |
|||
for r in range(3): |
|||
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) |
|||
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) |
|||
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) |
|||
if block.downsample is not None: |
|||
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) |
|||
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) |
|||
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) |
|||
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) |
|||
else: |
|||
embed_conv_w = adapt_input_conv( |
|||
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) |
|||
model.patch_embed.proj.weight.copy_(embed_conv_w) |
|||
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) |
|||
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) |
|||
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) |
|||
if pos_embed_w.shape != model.pos_embed.shape: |
|||
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights |
|||
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) |
|||
model.pos_embed.copy_(pos_embed_w) |
|||
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) |
|||
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) |
|||
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: |
|||
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) |
|||
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) |
|||
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: |
|||
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) |
|||
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) |
|||
for i, block in enumerate(model.blocks.children()): |
|||
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' |
|||
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' |
|||
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) |
|||
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) |
|||
block.attn.qkv.weight.copy_(torch.cat([ |
|||
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) |
|||
block.attn.qkv.bias.copy_(torch.cat([ |
|||
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) |
|||
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) |
|||
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) |
|||
for r in range(2): |
|||
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) |
|||
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) |
|||
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) |
|||
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) |
|||
|
|||
|
|||
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): |
|||
# interpolate position embedding |
|||
embedding_size = pos_embed_checkpoint.shape[-1] |
|||
num_patches = visual_encoder.patch_embed.num_patches |
|||
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches |
|||
# height (== width) for the checkpoint position embedding |
|||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) |
|||
# height (== width) for the new position embedding |
|||
new_size = int(num_patches ** 0.5) |
|||
|
|||
if orig_size!=new_size: |
|||
# class_token and dist_token are kept unchanged |
|||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|||
# only the position tokens are interpolated |
|||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|||
pos_tokens = torch.nn.functional.interpolate( |
|||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|||
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) |
|||
|
|||
return new_pos_embed |
|||
else: |
|||
return pos_embed_checkpoint |
@ -0,0 +1,6 @@ |
|||
torch>=1.9.0 |
|||
torchvision>=0.10.0 |
|||
Pillow |
|||
towhee |
|||
timm |
|||
transformers>=4.15.0 |
After Width: | Height: | Size: 176 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 12 KiB |
Loading…
Reference in new issue