albef
copied
wxywb
2 years ago
1 changed files with 107 additions and 1 deletions
@ -1,2 +1,108 @@ |
|||||
# albef |
|
||||
|
# Image-Text Retrieval Embdding with ALBEF |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for image or text with [ALBEF](https://arxiv.org/abs/2103.00020) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This research introduced a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. This repo is an adaptation from [salesforce / ALBEF](https://github.com/salesforce/ALBEF) |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './teddy.jpg' to generate an image embedding. |
||||
|
|
||||
|
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./teddy.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_text_embedding.albef(model_name='albef_4m', modality='image') \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc(["A teddybear on a skateboard in Times Square."]) \ |
||||
|
.image_text_embedding.albef(model_name='albef_4m', modality='text') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec1.png" alt="result1" style="height:20px;"/> |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/vec2.png" alt="result2" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./teddy.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_text_embedding.albef['img', 'vec'](model_name='albef_4m', modality='image') \ |
||||
|
.select['img', 'vec']() \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \ |
||||
|
.image_text_embedding.albef['text','vec'](model_name='albef_4m', modality='text') \ |
||||
|
.select['text', 'vec']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular1.png" alt="result1" style="height:60px;"/> |
||||
|
<img src="https://towhee.io/image-text-embedding/clip/raw/branch/main/tabular2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***albef(model_name, modality)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name:*** *str* |
||||
|
|
||||
|
The model name of ALBEF. Supported model names: |
||||
|
- albef_4m |
||||
|
- albef_14m |
||||
|
|
||||
|
|
||||
|
***modality:*** *str* |
||||
|
|
||||
|
Which modality(*image* or *text*) is used to generate the embedding. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
||||
|
|
||||
|
The data (image or text based on specified modality) to generate embedding. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The data embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
Loading…
Reference in new issue