sbert
              
                
                
            
          copied
				 3 changed files with 142 additions and 0 deletions
			
			
		@ -0,0 +1,86 @@ | 
			
		|||||
 | 
				# This script is hacked and modified from https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py | 
			
		||||
 | 
				# For more specified training tasks, please refer https://github.com/UKPLab/sentence-transformers/tree/master/examples/training | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				from torch.utils.data import DataLoader | 
			
		||||
 | 
				import math | 
			
		||||
 | 
				from sentence_transformers import SentenceTransformer, LoggingHandler, losses, InputExample | 
			
		||||
 | 
				from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator | 
			
		||||
 | 
				import logging | 
			
		||||
 | 
				from datetime import datetime | 
			
		||||
 | 
				import os | 
			
		||||
 | 
				import gzip | 
			
		||||
 | 
				import csv | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#### Just some code to print debug information to stdout | 
			
		||||
 | 
				logging.basicConfig(format='%(asctime)s - %(message)s', | 
			
		||||
 | 
				                    datefmt='%Y-%m-%d %H:%M:%S', | 
			
		||||
 | 
				                    level=logging.INFO, | 
			
		||||
 | 
				                    handlers=[LoggingHandler()]) | 
			
		||||
 | 
				#### /print debug information to stdout | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def train_sts(model, training_config): | 
			
		||||
 | 
				    sts_dataset_path = training_config['sts_dataset_path'] | 
			
		||||
 | 
				    train_batch_size = training_config['train_batch_size'] | 
			
		||||
 | 
				    num_epochs = training_config['num_epochs'] | 
			
		||||
 | 
				    model_save_path = training_config['model_save_path'] | 
			
		||||
 | 
				    if not os.path.exists(model_save_path): | 
			
		||||
 | 
				        os.mkdir(model_save_path) | 
			
		||||
 | 
				    model_save_path = os.path.join('training_stsbenchmark_continue_training-' + datetime.now().strftime( | 
			
		||||
 | 
				        "%Y-%m-%d_%H-%M-%S")) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # Convert the dataset to a DataLoader ready for training | 
			
		||||
 | 
				    logging.info("Read STSbenchmark train dataset") | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    train_samples = [] | 
			
		||||
 | 
				    dev_samples = [] | 
			
		||||
 | 
				    test_samples = [] | 
			
		||||
 | 
				    with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: | 
			
		||||
 | 
				        reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) | 
			
		||||
 | 
				        for row in reader: | 
			
		||||
 | 
				            score = float(row['score']) / 5.0  # Normalize score to range 0 ... 1 | 
			
		||||
 | 
				            inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				            if row['split'] == 'dev': | 
			
		||||
 | 
				                dev_samples.append(inp_example) | 
			
		||||
 | 
				            elif row['split'] == 'test': | 
			
		||||
 | 
				                test_samples.append(inp_example) | 
			
		||||
 | 
				            else: | 
			
		||||
 | 
				                train_samples.append(inp_example) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) | 
			
		||||
 | 
				    train_loss = losses.CosineSimilarityLoss(model=model) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # Development set: Measure correlation between cosine score and gold labels | 
			
		||||
 | 
				    logging.info("Read STSbenchmark dev dataset") | 
			
		||||
 | 
				    evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # Configure the training. We skip evaluation in this example | 
			
		||||
 | 
				    warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up | 
			
		||||
 | 
				    logging.info("Warmup-steps: {}".format(warmup_steps)) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # Train the model | 
			
		||||
 | 
				    model.fit(train_objectives=[(train_dataloader, train_loss)], | 
			
		||||
 | 
				              evaluator=evaluator, | 
			
		||||
 | 
				              epochs=num_epochs, | 
			
		||||
 | 
				              evaluation_steps=1000, | 
			
		||||
 | 
				              warmup_steps=warmup_steps, | 
			
		||||
 | 
				              output_path=model_save_path) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    ############################################################################## | 
			
		||||
 | 
				    # | 
			
		||||
 | 
				    # Load the stored model and evaluate its performance on STS benchmark dataset | 
			
		||||
 | 
				    # | 
			
		||||
 | 
				    ############################################################################## | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    model = SentenceTransformer(model_save_path) | 
			
		||||
 | 
				    test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') | 
			
		||||
 | 
				    test_evaluator(model, output_path=model_save_path) | 
			
		||||
					Loading…
					
					
				
		Reference in new issue