sbert
copied
3 changed files with 142 additions and 0 deletions
@ -0,0 +1,86 @@ |
|||||
|
# This script is hacked and modified from https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py |
||||
|
# For more specified training tasks, please refer https://github.com/UKPLab/sentence-transformers/tree/master/examples/training |
||||
|
|
||||
|
from torch.utils.data import DataLoader |
||||
|
import math |
||||
|
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, InputExample |
||||
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
||||
|
import logging |
||||
|
from datetime import datetime |
||||
|
import os |
||||
|
import gzip |
||||
|
import csv |
||||
|
|
||||
|
#### Just some code to print debug information to stdout |
||||
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
||||
|
datefmt='%Y-%m-%d %H:%M:%S', |
||||
|
level=logging.INFO, |
||||
|
handlers=[LoggingHandler()]) |
||||
|
#### /print debug information to stdout |
||||
|
|
||||
|
|
||||
|
|
||||
|
def train_sts(model, training_config): |
||||
|
sts_dataset_path = training_config['sts_dataset_path'] |
||||
|
train_batch_size = training_config['train_batch_size'] |
||||
|
num_epochs = training_config['num_epochs'] |
||||
|
model_save_path = training_config['model_save_path'] |
||||
|
if not os.path.exists(model_save_path): |
||||
|
os.mkdir(model_save_path) |
||||
|
model_save_path = os.path.join('training_stsbenchmark_continue_training-' + datetime.now().strftime( |
||||
|
"%Y-%m-%d_%H-%M-%S")) |
||||
|
|
||||
|
|
||||
|
# Convert the dataset to a DataLoader ready for training |
||||
|
logging.info("Read STSbenchmark train dataset") |
||||
|
|
||||
|
train_samples = [] |
||||
|
dev_samples = [] |
||||
|
test_samples = [] |
||||
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
||||
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
||||
|
for row in reader: |
||||
|
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 |
||||
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
||||
|
|
||||
|
if row['split'] == 'dev': |
||||
|
dev_samples.append(inp_example) |
||||
|
elif row['split'] == 'test': |
||||
|
test_samples.append(inp_example) |
||||
|
else: |
||||
|
train_samples.append(inp_example) |
||||
|
|
||||
|
|
||||
|
|
||||
|
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) |
||||
|
train_loss = losses.CosineSimilarityLoss(model=model) |
||||
|
|
||||
|
|
||||
|
# Development set: Measure correlation between cosine score and gold labels |
||||
|
logging.info("Read STSbenchmark dev dataset") |
||||
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
||||
|
|
||||
|
|
||||
|
# Configure the training. We skip evaluation in this example |
||||
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up |
||||
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
||||
|
|
||||
|
|
||||
|
# Train the model |
||||
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
||||
|
evaluator=evaluator, |
||||
|
epochs=num_epochs, |
||||
|
evaluation_steps=1000, |
||||
|
warmup_steps=warmup_steps, |
||||
|
output_path=model_save_path) |
||||
|
|
||||
|
|
||||
|
############################################################################## |
||||
|
# |
||||
|
# Load the stored model and evaluate its performance on STS benchmark dataset |
||||
|
# |
||||
|
############################################################################## |
||||
|
|
||||
|
model = SentenceTransformer(model_save_path) |
||||
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') |
||||
|
test_evaluator(model, output_path=model_save_path) |
Loading…
Reference in new issue