|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import os
|
|
|
|
import torch
|
|
|
|
import shutil
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM, AutoModelForCausalLM
|
|
|
|
|
|
|
|
from towhee.operator import NNOperator
|
|
|
|
from towhee import register
|
|
|
|
try:
|
|
|
|
from towhee import accelerate
|
|
|
|
except:
|
|
|
|
def accelerate(func):
|
|
|
|
return func
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
import logging
|
|
|
|
from transformers import logging as t_logging
|
|
|
|
|
|
|
|
from .train_mlm_with_hf_trainer import train_mlm_with_hf_trainer
|
|
|
|
from .train_clm_with_hf_trainer import train_clm_with_hf_trainer
|
|
|
|
|
|
|
|
log = logging.getLogger('run_op')
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
t_logging.set_verbosity_error()
|
|
|
|
|
|
|
|
|
|
|
|
def create_model(model_name, checkpoint_path, device):
|
|
|
|
model = AutoModel.from_pretrained(model_name).to(device)
|
|
|
|
if hasattr(model, 'pooler') and model.pooler:
|
|
|
|
model.pooler = None
|
|
|
|
if checkpoint_path:
|
|
|
|
try:
|
|
|
|
state_dict = torch.load(checkpoint_path, map_location=device)
|
|
|
|
model.load_state_dict(state_dict)
|
|
|
|
except Exception:
|
|
|
|
log.error(f'Fail to load weights from {checkpoint_path}')
|
|
|
|
model.eval()
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@accelerate
|
|
|
|
class Model:
|
|
|
|
def __init__(self, model_name, checkpoint_path, device):
|
|
|
|
self.device = device
|
|
|
|
self.model = create_model(model_name, checkpoint_path, device)
|
|
|
|
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
|
|
new_args = []
|
|
|
|
for x in args:
|
|
|
|
new_args.append(x.to(self.device))
|
|
|
|
new_kwargs = {}
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
new_kwargs[k] = v.to(self.device)
|
|
|
|
outs = self.model(*new_args, **new_kwargs, return_dict=True)
|
|
|
|
return outs['last_hidden_state']
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class AutoTransformers(NNOperator):
|
|
|
|
"""
|
|
|
|
NLP embedding operator that uses the pretrained transformers model gathered by huggingface.
|
|
|
|
Args:
|
|
|
|
model_name (`str`):
|
|
|
|
The model name to load a pretrained model from transformers.
|
|
|
|
checkpoint_path (`str`):
|
|
|
|
The local checkpoint path.
|
|
|
|
tokenizer (`object`):
|
|
|
|
The tokenizer to tokenize input text as model inputs.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
model_name: str = None,
|
|
|
|
checkpoint_path: str = None,
|
|
|
|
tokenizer: object = None,
|
|
|
|
device: str = None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if device is None:
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
self.device = device
|
|
|
|
self.model_name = model_name
|
|
|
|
self.checkpoint_path = checkpoint_path
|
|
|
|
|
|
|
|
if self.model_name:
|
|
|
|
# model_list = self.supported_model_names()
|
|
|
|
# assert model_name in model_list, f"Invalid model name: {model_name}. Supported model names: {model_list}"
|
|
|
|
self.model = Model(model_name=self.model_name, checkpoint_path=self.checkpoint_path, device=self.device)
|
|
|
|
if tokenizer:
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
else:
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
if not self.tokenizer.pad_token:
|
|
|
|
self.tokenizer.pad_token = '[PAD]'
|
|
|
|
else:
|
|
|
|
log.warning('The operator is initialized without specified model.')
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __call__(self, data: Union[str, list]) -> numpy.ndarray:
|
|
|
|
if isinstance(data, str):
|
|
|
|
txt = [data]
|
|
|
|
else:
|
|
|
|
txt = data
|
|
|
|
try:
|
|
|
|
inputs = self.tokenizer(txt, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to tokenize inputs: {e}')
|
|
|
|
raise e
|
|
|
|
try:
|
|
|
|
outs = self.model(**inputs)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Invalid input for the model: {self.model_name}')
|
|
|
|
raise e
|
|
|
|
features = outs.cpu().detach().numpy()
|
|
|
|
if isinstance(data, str):
|
|
|
|
features = features.squeeze(0)
|
|
|
|
else:
|
|
|
|
features = list(features)
|
|
|
|
return features
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _model(self):
|
|
|
|
return self.model.model.to('cpu')
|
|
|
|
|
|
|
|
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'):
|
|
|
|
if output_file == 'default':
|
|
|
|
output_file = str(Path(__file__).parent)
|
|
|
|
output_file = os.path.join(output_file, 'saved', model_type)
|
|
|
|
os.makedirs(output_file, exist_ok=True)
|
|
|
|
name = self.model_name.replace('/', '-')
|
|
|
|
output_file = os.path.join(output_file, name)
|
|
|
|
if model_type in ['pytorch', 'torchscript']:
|
|
|
|
output_file = output_file + '.pt'
|
|
|
|
elif model_type == 'onnx':
|
|
|
|
output_file = output_file + '.onnx'
|
|
|
|
else:
|
|
|
|
raise AttributeError('Unsupported model_type.')
|
|
|
|
|
|
|
|
dummy_input = '[CLS]'
|
|
|
|
inputs = self.tokenizer(dummy_input, padding=True, truncation=True, return_tensors='pt') # a dictionary
|
|
|
|
if model_type == 'pytorch':
|
|
|
|
torch.save(self._model, output_file)
|
|
|
|
elif model_type == 'torchscript':
|
|
|
|
inputs = list(inputs.values())
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
jit_model = torch.jit.script(self._model)
|
|
|
|
except Exception:
|
|
|
|
jit_model = torch.jit.trace(self._model, inputs, strict=False)
|
|
|
|
torch.jit.save(jit_model, output_file)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as torchscript: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.')
|
|
|
|
elif model_type == 'onnx':
|
|
|
|
from transformers.onnx.features import FeaturesManager
|
|
|
|
from transformers.onnx import export
|
|
|
|
|
|
|
|
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(
|
|
|
|
self._model, feature='default')
|
|
|
|
onnx_config = model_onnx_config(self._model.config)
|
|
|
|
# if os.path.isdir(output_file[:-5]):
|
|
|
|
# shutil.rmtree(output_file[:-5])
|
|
|
|
# print('********', Path(output_file))
|
|
|
|
onnx_inputs, onnx_outputs = export(
|
|
|
|
self.tokenizer,
|
|
|
|
self._model,
|
|
|
|
config=onnx_config,
|
|
|
|
opset=13,
|
|
|
|
output=Path(output_file)
|
|
|
|
)
|
|
|
|
# todo: elif format == 'tensorrt':
|
|
|
|
else:
|
|
|
|
log.error(f'Unsupported format "{format}".')
|
|
|
|
return Path(output_file).resolve()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def supported_formats(self):
|
|
|
|
onnxes = self.supported_model_names(format='onnx')
|
|
|
|
if self.model_name in onnxes:
|
|
|
|
return ['onnx']
|
|
|
|
else:
|
|
|
|
return ['pytorch']
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def supported_model_names(format: str = None):
|
|
|
|
full_list = [
|
|
|
|
"bert-large-uncased",
|
|
|
|
"bert-base-cased",
|
|
|
|
"bert-base-uncased",
|
|
|
|
"bert-large-cased",
|
|
|
|
"bert-base-multilingual-uncased",
|
|
|
|
"bert-base-multilingual-cased",
|
|
|
|
"bert-base-chinese",
|
|
|
|
"bert-base-german-cased",
|
|
|
|
"bert-large-uncased-whole-word-masking",
|
|
|
|
"bert-large-cased-whole-word-masking",
|
|
|
|
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
|
|
|
"bert-large-cased-whole-word-masking-finetuned-squad",
|
|
|
|
"bert-base-cased-finetuned-mrpc",
|
|
|
|
"bert-base-german-dbmdz-cased",
|
|
|
|
"bert-base-german-dbmdz-uncased",
|
|
|
|
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
|
|
|
"cl-tohoku/bert-base-japanese-char",
|
|
|
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
|
|
|
"TurkuNLP/bert-base-finnish-cased-v1",
|
|
|
|
"TurkuNLP/bert-base-finnish-uncased-v1",
|
|
|
|
"wietsedv/bert-base-dutch-cased",
|
|
|
|
"google/bigbird-roberta-base",
|
|
|
|
"google/bigbird-roberta-large",
|
|
|
|
"google/bigbird-base-trivia-itc",
|
|
|
|
"albert-base-v1",
|
|
|
|
"albert-large-v1",
|
|
|
|
"albert-xlarge-v1",
|
|
|
|
"albert-xxlarge-v1",
|
|
|
|
"albert-base-v2",
|
|
|
|
"albert-large-v2",
|
|
|
|
"albert-xlarge-v2",
|
|
|
|
"albert-xxlarge-v2",
|
|
|
|
"facebook/bart-large",
|
|
|
|
"google/bert_for_seq_generation_L-24_bbc_encoder",
|
|
|
|
"google/bigbird-pegasus-large-arxiv",
|
|
|
|
"google/bigbird-pegasus-large-pubmed",
|
|
|
|
"google/bigbird-pegasus-large-bigpatent",
|
|
|
|
"google/canine-s",
|
|
|
|
"google/canine-c",
|
|
|
|
"YituTech/conv-bert-base",
|
|
|
|
"YituTech/conv-bert-medium-small",
|
|
|
|
"YituTech/conv-bert-small",
|
|
|
|
"ctrl",
|
|
|
|
"microsoft/deberta-base",
|
|
|
|
"microsoft/deberta-large",
|
|
|
|
"microsoft/deberta-xlarge",
|
|
|
|
"microsoft/deberta-base-mnli",
|
|
|
|
"microsoft/deberta-large-mnli",
|
|
|
|
"microsoft/deberta-xlarge-mnli",
|
|
|
|
"distilbert-base-uncased",
|
|
|
|
"distilbert-base-uncased-distilled-squad",
|
|
|
|
"distilbert-base-cased",
|
|
|
|
"distilbert-base-cased-distilled-squad",
|
|
|
|
"distilbert-base-german-cased",
|
|
|
|
"distilbert-base-multilingual-cased",
|
|
|
|
"distilbert-base-uncased-finetuned-sst-2-english",
|
|
|
|
"google/electra-small-generator",
|
|
|
|
"google/electra-base-generator",
|
|
|
|
"google/electra-large-generator",
|
|
|
|
"google/electra-small-discriminator",
|
|
|
|
"google/electra-base-discriminator",
|
|
|
|
"google/electra-large-discriminator",
|
|
|
|
"google/fnet-base",
|
|
|
|
"google/fnet-large",
|
|
|
|
"facebook/wmt19-ru-en",
|
|
|
|
"funnel-transformer/small",
|
|
|
|
"funnel-transformer/small-base",
|
|
|
|
"funnel-transformer/medium",
|
|
|
|
"funnel-transformer/medium-base",
|
|
|
|
"funnel-transformer/intermediate",
|
|
|
|
"funnel-transformer/intermediate-base",
|
|
|
|
"funnel-transformer/large",
|
|
|
|
"funnel-transformer/large-base",
|
|
|
|
"funnel-transformer/xlarge-base",
|
|
|
|
"funnel-transformer/xlarge",
|
|
|
|
"gpt2",
|
|
|
|
"gpt2-medium",
|
|
|
|
"gpt2-large",
|
|
|
|
"gpt2-xl",
|
|
|
|
"distilgpt2",
|
|
|
|
"EleutherAI/gpt-neo-1.3B",
|
|
|
|
"EleutherAI/gpt-j-6B",
|
|
|
|
"kssteven/ibert-roberta-base",
|
|
|
|
"allenai/led-base-16384",
|
|
|
|
"google/mobilebert-uncased",
|
|
|
|
"microsoft/mpnet-base",
|
|
|
|
"uw-madison/nystromformer-512",
|
|
|
|
"openai-gpt",
|
|
|
|
"google/reformer-crime-and-punishment",
|
|
|
|
"tau/splinter-base",
|
|
|
|
"tau/splinter-base-qass",
|
|
|
|
"tau/splinter-large",
|
|
|
|
"tau/splinter-large-qass",
|
|
|
|
"squeezebert/squeezebert-uncased",
|
|
|
|
"squeezebert/squeezebert-mnli",
|
|
|
|
"squeezebert/squeezebert-mnli-headless",
|
|
|
|
"transfo-xl-wt103",
|
|
|
|
"xlm-mlm-en-2048",
|
|
|
|
"xlm-mlm-ende-1024",
|
|
|
|
"xlm-mlm-enfr-1024",
|
|
|
|
"xlm-mlm-enro-1024",
|
|
|
|
"xlm-mlm-tlm-xnli15-1024",
|
|
|
|
"xlm-mlm-xnli15-1024",
|
|
|
|
"xlm-clm-enfr-1024",
|
|
|
|
"xlm-clm-ende-1024",
|
|
|
|
"xlm-mlm-17-1280",
|
|
|
|
"xlm-mlm-100-1280",
|
|
|
|
"xlm-roberta-base",
|
|
|
|
"xlm-roberta-large",
|
|
|
|
"xlm-roberta-large-finetuned-conll02-dutch",
|
|
|
|
"xlm-roberta-large-finetuned-conll02-spanish",
|
|
|
|
"xlm-roberta-large-finetuned-conll03-english",
|
|
|
|
"xlm-roberta-large-finetuned-conll03-german",
|
|
|
|
"xlnet-base-cased",
|
|
|
|
"xlnet-large-cased",
|
|
|
|
"uw-madison/yoso-4096",
|
|
|
|
"microsoft/deberta-v2-xlarge",
|
|
|
|
"microsoft/deberta-v2-xxlarge",
|
|
|
|
"microsoft/deberta-v2-xlarge-mnli",
|
|
|
|
"microsoft/deberta-v2-xxlarge-mnli",
|
|
|
|
"flaubert/flaubert_small_cased",
|
|
|
|
"flaubert/flaubert_base_uncased",
|
|
|
|
"flaubert/flaubert_base_cased",
|
|
|
|
"flaubert/flaubert_large_cased",
|
|
|
|
"camembert-base",
|
|
|
|
"Musixmatch/umberto-commoncrawl-cased-v1",
|
|
|
|
"Musixmatch/umberto-wikipedia-uncased-v1",
|
|
|
|
]
|
|
|
|
full_list.sort()
|
|
|
|
if format is None:
|
|
|
|
model_list = full_list
|
|
|
|
elif format == 'pytorch':
|
|
|
|
to_remove = []
|
|
|
|
assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
elif format == 'torchscript':
|
|
|
|
to_remove = [
|
|
|
|
'EleutherAI/gpt-j-6B',
|
|
|
|
'EleutherAI/gpt-neo-1.3B',
|
|
|
|
'allenai/led-base-16384',
|
|
|
|
'ctrl',
|
|
|
|
'distilgpt2',
|
|
|
|
'facebook/bart-large',
|
|
|
|
'google/bigbird-pegasus-large-arxiv',
|
|
|
|
'google/bigbird-pegasus-large-bigpatent',
|
|
|
|
'google/bigbird-pegasus-large-pubmed',
|
|
|
|
'google/canine-c',
|
|
|
|
'google/canine-s',
|
|
|
|
'google/reformer-crime-and-punishment',
|
|
|
|
'gpt2',
|
|
|
|
'gpt2-large',
|
|
|
|
'gpt2-medium',
|
|
|
|
'gpt2-xl',
|
|
|
|
'microsoft/deberta-base',
|
|
|
|
'microsoft/deberta-base-mnli',
|
|
|
|
'microsoft/deberta-large',
|
|
|
|
'microsoft/deberta-large-mnli',
|
|
|
|
'microsoft/deberta-xlarge',
|
|
|
|
'microsoft/deberta-xlarge-mnli',
|
|
|
|
'openai-gpt',
|
|
|
|
'transfo-xl-wt103',
|
|
|
|
'uw-madison/yoso-4096',
|
|
|
|
'xlm-clm-ende-1024',
|
|
|
|
'xlm-clm-enfr-1024',
|
|
|
|
'xlm-mlm-100-1280',
|
|
|
|
'xlm-mlm-17-1280',
|
|
|
|
'xlm-mlm-en-2048',
|
|
|
|
'xlm-mlm-ende-1024',
|
|
|
|
'xlm-mlm-enfr-1024',
|
|
|
|
'xlm-mlm-enro-1024',
|
|
|
|
'xlm-mlm-tlm-xnli15-1024',
|
|
|
|
'xlm-mlm-xnli15-1024',
|
|
|
|
'xlnet-base-cased',
|
|
|
|
'xlnet-large-cased',
|
|
|
|
'microsoft/deberta-v2-xlarge',
|
|
|
|
'microsoft/deberta-v2-xxlarge',
|
|
|
|
'microsoft/deberta-v2-xlarge-mnli',
|
|
|
|
'microsoft/deberta-v2-xxlarge-mnli',
|
|
|
|
'flaubert/flaubert_small_cased',
|
|
|
|
'flaubert/flaubert_base_uncased',
|
|
|
|
'flaubert/flaubert_base_cased',
|
|
|
|
'flaubert/flaubert_large_cased'
|
|
|
|
]
|
|
|
|
assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
elif format == 'onnx':
|
|
|
|
to_remove = [
|
|
|
|
'ctrl',
|
|
|
|
'funnel-transformer/intermediate',
|
|
|
|
'funnel-transformer/large',
|
|
|
|
'funnel-transformer/medium',
|
|
|
|
'funnel-transformer/small',
|
|
|
|
'funnel-transformer/xlarge',
|
|
|
|
'google/canine-c',
|
|
|
|
'google/canine-s',
|
|
|
|
'google/fnet-base',
|
|
|
|
'google/fnet-large',
|
|
|
|
'google/reformer-crime-and-punishment',
|
|
|
|
'transfo-xl-wt103',
|
|
|
|
'uw-madison/yoso-4096',
|
|
|
|
'xlnet-base-cased',
|
|
|
|
'xlnet-large-cased'
|
|
|
|
]
|
|
|
|
assert set(to_remove).issubset(set(full_list))
|
|
|
|
model_list = list(set(full_list) - set(to_remove))
|
|
|
|
# todo: elif format == 'tensorrt':
|
|
|
|
else:
|
|
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
|
|
|
|
return model_list
|
|
|
|
|
|
|
|
def train(self, training_config=None,
|
|
|
|
train_dataset=None,
|
|
|
|
eval_dataset=None,
|
|
|
|
resume_checkpoint_path=None, **kwargs):
|
|
|
|
task = kwargs.pop('task', None)
|
|
|
|
data_args = kwargs.pop('data_args', None)
|
|
|
|
training_args = kwargs.pop('training_args', None)
|
|
|
|
prepare_model_weights_f = kwargs.pop('prepare_model_weights_f', None)
|
|
|
|
|
|
|
|
if task == 'mlm' or task is None:
|
|
|
|
model_with_head = AutoModelForMaskedLM.from_pretrained(self.model_name)
|
|
|
|
if prepare_model_weights_f is not None:
|
|
|
|
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs)
|
|
|
|
|
|
|
|
train_mlm_with_hf_trainer(
|
|
|
|
model_with_head,
|
|
|
|
self.tokenizer,
|
|
|
|
data_args,
|
|
|
|
training_args,
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
elif task == 'clm':
|
|
|
|
model_with_head = AutoModelForCausalLM.from_pretrained(self.model_name)
|
|
|
|
if prepare_model_weights_f is not None:
|
|
|
|
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs)
|
|
|
|
|
|
|
|
train_clm_with_hf_trainer(
|
|
|
|
model_with_head,
|
|
|
|
self.tokenizer,
|
|
|
|
data_args,
|
|
|
|
training_args,
|
|
|
|
**kwargs
|
|
|
|
)
|