transformers
copied
Jael Gu
3 years ago
4 changed files with 166 additions and 1 deletions
@ -1,2 +1,74 @@ |
|||
# transformers |
|||
# Text Embedding with Transformers |
|||
|
|||
*author: Jael Gu* |
|||
|
|||
|
|||
|
|||
## Desription |
|||
|
|||
A text embedding operator implemented with pretrained models from [Huggingface Transformers](https://huggingface.co/docs/transformers). |
|||
|
|||
|
|||
|
|||
```python |
|||
from towhee import ops |
|||
|
|||
text_encoder = ops.text_embedding.transformers("bert-base-cased") |
|||
text_embedding = text_encoder("Hello, world.") |
|||
``` |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***ops.text_embedding.transformers(model_name)*** |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
A text embedding operator takes a sentence, paragraph, or document in string as an input |
|||
and output an embedding vector in ndarray which captures the input's core semantic elements. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***text***: *str* |
|||
|
|||
The text in string. |
|||
|
|||
|
|||
|
|||
**Returns**: *numpy.ndarray* |
|||
|
|||
The text embedding extracted by model. |
|||
|
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Use the pretrained Bert-Base-Cased model ('bert-base-cased') |
|||
to generate a text embedding for the sentence "Hello, world.". |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee.DataCollection as dc |
|||
|
|||
dc.glob("Hello, world.") |
|||
.text_embedding.transformers('bert-base-cased') |
|||
.show() |
|||
``` |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import DataCollection as dc |
|||
|
|||
dc.glob['text']('Hello, world.') |
|||
.text_embedding.transformers['text', 'vec']('bert-base-cased') |
|||
.select('vec') |
|||
.show() |
|||
``` |
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .auto_transformers import AutoTransformers |
|||
|
|||
|
|||
def transformers(): |
|||
return AutoTransformers() |
@ -0,0 +1,70 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import logging |
|||
import numpy |
|||
|
|||
from transformers import AutoTokenizer, AutoModel |
|||
|
|||
from towhee.operator import NNOperator |
|||
from towhee import register |
|||
|
|||
import warnings |
|||
|
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class AutoTransformers(NNOperator): |
|||
""" |
|||
NLP embedding operator that uses the pretrained transformers model gathered by huggingface. |
|||
Args: |
|||
model_name (`str`): |
|||
Which model to use for the embeddings. |
|||
""" |
|||
|
|||
def __init__(self, model_name: str) -> None: |
|||
super().__init__() |
|||
self.model_name = model_name |
|||
try: |
|||
self.model = AutoModel.from_pretrained(model_name) |
|||
except Exception as e: |
|||
log.error(f'Fail to load model by name: {self.model_name}') |
|||
raise e |
|||
try: |
|||
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|||
except Exception as e: |
|||
log.error(f'Fail to load tokenizer by name: {self.model_name}') |
|||
raise e |
|||
|
|||
def __call__(self, txt: str) -> numpy.ndarray: |
|||
try: |
|||
inputs = self.tokenizer(txt, return_tensors="pt") |
|||
except Exception as e: |
|||
log.error(f'Invalid input for the tokenizer: {self.model_name}') |
|||
raise e |
|||
try: |
|||
outs = self.model(**inputs) |
|||
except Exception as e: |
|||
log.error(f'Invalid input for the model: {self.model_name}') |
|||
raise e |
|||
try: |
|||
features = outs.last_hidden_state.squeeze(0) |
|||
except Exception as e: |
|||
log.error(f'Fail to extract features by model: {self.model_name}') |
|||
raise e |
|||
feature_vector = features.detach().numpy() |
|||
return feature_vector |
|||
|
@ -0,0 +1,4 @@ |
|||
numpy |
|||
transformers |
|||
sentencepiece |
|||
protobuf |
Loading…
Reference in new issue