logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

103 lines
2.3 KiB

3 years ago
# Video-Text Retrieval Embdding with CLIP4Clip
*author: Chen Zhang*
<br />
## Description
This operator extracts features for video or text with [CLIP4Clip](https://arxiv.org/abs/2104.08860) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
<br />
## Code Example
Read the text 'kids feeding and playing with the horse' to generate an text embedding.
```python
from towhee.dc2 import pipe, ops, DataCollection
3 years ago
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='text', device='cuda:1')) \
.output('text', 'vec')
)
3 years ago
DataCollection(p('kids feeding and playing with the horse')).show()
3 years ago
```
![](text_emb_output.png)
3 years ago
Load an video from path './demo_video.mp4' to generate an video embedding.
3 years ago
```python
from towhee.dc2 import pipe, ops, DataCollection
3 years ago
p = (
pipe.input('video_path') \
.map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \
.map('flame_gen', 'flame_list', lambda x: [y for y in x]) \
.map('flame_list', 'vec', ops.video_text_embedding.clip4clip(model_name='clip_vit_b32', modality='video', device='cuda:2')) \
.output('video_path', 'flame_list', 'vec')
)
DataCollection(p('./demo_video.mp4')).show()
```
![](video_emb_ouput.png)
3 years ago
<br />
## Factory Constructor
Create the operator via the following factory method
***clip4clip(model_name, modality, weight_path)***
**Parameters:**
***model_name:*** *str*
​ The model name of CLIP. Supported model names:
- clip_vit_b32
***modality:*** *str*
​ Which modality(*video* or *text*) is used to generate the embedding.
***weight_path:*** *str*
​ pretrained model weights path.
<br />
## Interface
An video-text embedding operator takes a list of [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.Image]* or *str*
​ The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.
3 years ago