logo
Browse Source

init DRL model

main
ChengZi 3 years ago
parent
commit
92f9c5a82d
  1. 110
      README.md
  2. BIN
      WTI.png
  3. 20
      __init__.py
  4. BIN
      demo_video.mp4
  5. 93
      drl.py
  6. 4
      requirements.txt
  7. BIN
      vect_explicit_text.png
  8. BIN
      vect_explicit_video.png
  9. BIN
      vect_simplified_text.png
  10. BIN
      vect_simplified_video.png

110
README.md

@ -1,2 +1,110 @@
# drl
# Video-Text Retrieval Embedding with DRL
*author: Chen Zhang*
<br />
## Description
This operator extracts features for video or text with [DRL(Disentangled Representation Learning for Text-Video Retrieval)](https://arxiv.org/pdf/2203.07111v1.pdf), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
<br />
![](WTI.png)
## Code Example
Load an video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op(func=lambda x: [y for y in x]) \
.drl(base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show()
towhee.dc(['kids feeding and playing with the horse']) \
.drl(base_encoder='clip_vit_b32', modality='text', device='cpu') \
.show()
```
![](vect_simplified_video.png)
![](vect_simplified_text.png)
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
.drl['frames', 'vec'](base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show(formatter={'path': 'video_path'})
towhee.dc['text'](['kids feeding and playing with the horse']) \
.drl['text','vec'](base_encoder='clip_vit_b32', modality='text', device='cpu') \
.select['text', 'vec']() \
.show()
```
![](vect_explicit_video.png)
![](vect_explicit_text.png)
<br />
## Factory Constructor
Create the operator via the following factory method
***drl(base_encoder, modality)***
**Parameters:**
***base_encoder:*** *str*
​ The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
***modality:*** *str*
​ Which modality(*video* or *text*) is used to generate the embedding.
<br />
## Interface
An video-text embedding operator takes a list of [towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.VideoFrame]* or *str*
​ The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)

BIN
WTI.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

20
__init__.py

@ -0,0 +1,20 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .drl import DRL
def drl(base_encoder: str, modality: str, **kwargs):
return DRL(base_encoder, modality, **kwargs)

BIN
demo_video.mp4

Binary file not shown.

93
drl.py

@ -0,0 +1,93 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from typing import List, Union
from torchvision import transforms
from towhee.models.clip4clip import convert_tokens_to_id
from towhee.operator.base import NNOperator
from towhee import register
from towhee.models import drl, clip4clip
from PIL import Image as PILImage
from towhee.types import VideoFrame
from pathlib import Path
@register(output_schema=['vec'])
class DRL(NNOperator):
"""
DRL multi-modal embedding operator
"""
def __init__(self, base_encoder: str, modality: str, weight_path: str = None, device: str = None):
super().__init__()
self.modality = modality
if weight_path is None:
weight_path = str(Path(__file__).parent / 'clip_vit_b32_wti.pth')
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.model = drl.create_model(base_encoder=base_encoder, pretrained=True, cdcr=0, weights_path=weight_path)
self.tokenize = clip4clip.SimpleTokenizer()
self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
self.model.eval()
def __call__(self, data: Union[str, List[VideoFrame]]):
if self.modality == 'video':
vec = self._inference_from_video(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec
def _inference_from_text(self, text: str):
self.model.eval()
text_ids = convert_tokens_to_id(self.tokenize, text)
text_ids = torch.tensor(text_ids).unsqueeze(0).to(self.device)
text_features = self.model.get_text_feat(text_ids) # B(1), N_t, D
return text_features.squeeze(0).detach().cpu().numpy() # N_t, D
def _inference_from_video(self, img_list: List[VideoFrame]):
self.model.eval()
max_frames = 12
video = np.zeros((1, max_frames, 1, 3, 224, 224), dtype=np.float64)
slice_len = len(img_list)
max_video_length = 0 if 0 > slice_len else slice_len
for i, img in enumerate(img_list):
pil_img = PILImage.fromarray(img, img.mode)
tfmed_img = self.tfms(pil_img).unsqueeze(0)
if slice_len >= 1:
video[0, i, ...] = tfmed_img.cpu().numpy()
video_mask = np.zeros((1, max_frames), dtype=np.int32)
video_mask[0, :max_video_length] = [1] * max_video_length
video = torch.as_tensor(video).float().to(self.device)
pair, bs, ts, channel, h, w = video.shape
video = video.view(pair * bs * ts, channel, h, w)
video_mask = torch.as_tensor(video_mask).float().to(self.device)
visual_output = self.model.get_video_feat(video, video_mask, shaped=True) # B(1), N_v, D
return visual_output.squeeze(0).detach().cpu().numpy() # N_v, D

4
requirements.txt

@ -0,0 +1,4 @@
torchvision
torch
towhee>=0.7.0
towhee.models>=0.7.0

BIN
vect_explicit_text.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
vect_explicit_video.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 585 KiB

BIN
vect_simplified_text.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
vect_simplified_video.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Loading…
Cancel
Save