# Video-Text Retrieval Embedding with Frozen In Time
*author: Jinling Xu*
<br/>
## Description
This operator extracts features for video or text with [Frozen In Time](https://arxiv.org/abs/2104.00650) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
<br/>
## Code Example
Load a video from path './demo_video.mp4' to generate a video embedding.
The model name of frozen in time. Supported model names:
- frozen_in_time_base_16_244
***modality:*** *str*
Which modality(*video* or *text*) is used to generate the embedding.
***weight_path:*** *str*
pretrained model weights path.
<br/>
## Interface
An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.Image]* or *str*
The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
- [What is BERT (Bidirectional Encoder Representations from Transformers)? - Zilliz blog](https://zilliz.com/learn/what-is-bert): Learn what Bidirectional Encoder Representations from Transformers (BERT) is and how it uses pre-training and fine-tuning to achieve its remarkable performance.
- [The guide to mistral-embed | Mistral AI](https://zilliz.com/ai-models/mistral-embed): mistral-embed: a specialized embedding model for text data with a context window of 8,000 tokens. Optimized for similarity retrieval and RAG applications.
- [Supercharged Semantic Similarity Search in Production - Zilliz blog](https://zilliz.com/learn/supercharged-semantic-similarity-search-in-production): Building a Blazing Fast, Highly Scalable Text-to-Image Search with CLIP embeddings and Milvus, the most advanced open-source vector database.
- [Sparse and Dense Embeddings: A Guide for Effective Information Retrieval with Milvus | Zilliz Webinar](https://zilliz.com/event/sparse-and-dense-embeddings-webinar/success): Zilliz webinar covering what sparse and dense embeddings are and when you'd want to use one over the other.
- [Tutorial: Diving into Text Embedding Models | Zilliz Webinar](https://zilliz.com/event/tutorial-text-embedding-models/success): Register for a free webinar diving into text embedding models in a presentation and tutorial
- [Tutorial: Diving into Text Embedding Models | Zilliz Webinar](https://zilliz.com/event/tutorial-text-embedding-models): Register for a free webinar diving into text embedding models in a presentation and tutorial
- [The guide to all-MiniLM-L12-v2 | Hugging Face](https://zilliz.com/ai-models/all-MiniLM-L12-v2): all-MiniLM-L12-v2: a text embedding model ideal for semantic search and RAG and fine-tuned based on Microsoft/MiniLM-L12-H384-uncased
- [Sparse and Dense Embeddings: A Guide for Effective Information Retrieval with Milvus | Zilliz Webinar](https://zilliz.com/event/sparse-and-dense-embeddings-webinar): Zilliz webinar covering what sparse and dense embeddings are and when you'd want to use one over the other.
- [Enhancing Information Retrieval with Sparse Embeddings | Zilliz Learn - Zilliz blog](https://zilliz.com/learn/enhancing-information-retrieval-learned-sparse-embeddings): Explore the inner workings, advantages, and practical applications of learned sparse embeddings with the Milvus vector database