ru-clip
copied
wxywb
2 years ago
2 changed files with 143 additions and 1 deletions
@ -1,2 +1,67 @@ |
|||||
# ru-clip |
|
||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class Clip(NNOperator): |
||||
|
""" |
||||
|
CLIP multi-modal embedding operator |
||||
|
""" |
||||
|
def __init__(self, model_name: str, modality: str): |
||||
|
self.modality = modality |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True) |
||||
|
self.tokenize = clip.tokenize |
||||
|
self.tfms = transforms.Compose([ |
||||
|
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), |
||||
|
transforms.CenterCrop(224), |
||||
|
transforms.ToTensor(), |
||||
|
transforms.Normalize( |
||||
|
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
||||
|
]) |
||||
|
|
||||
|
def inference_single_data(self, data): |
||||
|
if self.modality == 'image': |
||||
|
vec = self._inference_from_image(data) |
||||
|
elif self.modality == 'text': |
||||
|
vec = self._inference_from_text(data) |
||||
|
else: |
||||
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
||||
|
return vec.detach().cpu().numpy().flatten() |
||||
|
|
||||
|
def __call__(self, data): |
||||
|
if not isinstance(data, list): |
||||
|
data = [data] |
||||
|
else: |
||||
|
data = data |
||||
|
results = [] |
||||
|
for single_data in data: |
||||
|
result = self.inference_single_data(single_data) |
||||
|
results.append(result) |
||||
|
if len(data) == 1: |
||||
|
return results[0] |
||||
|
else: |
||||
|
return results |
||||
|
|
||||
|
def _inference_from_text(self, text): |
||||
|
text = self.tokenize(text).to(self.device) |
||||
|
text_features = self.model.encode_text(text) |
||||
|
return text_features |
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def _inference_from_image(self, img): |
||||
|
img = to_pil(img) |
||||
|
image = self.tfms(img).unsqueeze(0).to(self.device) |
||||
|
image_features = self.model.encode_image(image) |
||||
|
return image_features |
||||
|
|
||||
|
@ -0,0 +1,77 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
import sys |
||||
|
from pathlib import Path |
||||
|
import torch |
||||
|
from torchvision import transforms |
||||
|
|
||||
|
from towhee.types.image_utils import to_pil |
||||
|
from towhee.operator.base import NNOperator, OperatorFlag |
||||
|
from towhee.types.arg import arg, to_image_color |
||||
|
from towhee import register |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class RuClip(NNOperator): |
||||
|
""" |
||||
|
Russian CLIP multi-modal embedding operator |
||||
|
""" |
||||
|
def __init__(self, model_name: str, modality: str): |
||||
|
self.modality = modality |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True) |
||||
|
self.tokenize = clip.tokenize |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
|
||||
|
path = str(Path(__file__).parent) |
||||
|
sys.path.append(path) |
||||
|
import ruclip |
||||
|
sys.path.pop() |
||||
|
clip, processor = ruclip.load('ruclip-vit-base-patch32-384', device=self.device) |
||||
|
templates = ['{}', 'это {}', 'на картинке {}', 'это {}, домашнее животное'] |
||||
|
self.predictor = ruclip.Predictor(clip, processor, device, bs=1, templates=templates) |
||||
|
|
||||
|
def inference_single_data(self, data): |
||||
|
if self.modality == 'image': |
||||
|
vec = self._inference_from_image(data) |
||||
|
elif self.modality == 'text': |
||||
|
vec = self._inference_from_text(data) |
||||
|
else: |
||||
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
||||
|
return vec.detach().cpu().numpy().flatten() |
||||
|
|
||||
|
def __call__(self, data): |
||||
|
if not isinstance(data, list): |
||||
|
data = [data] |
||||
|
else: |
||||
|
data = data |
||||
|
results = [] |
||||
|
for single_data in data: |
||||
|
result = self.inference_single_data(single_data) |
||||
|
results.append(result) |
||||
|
if len(data) == 1: |
||||
|
return results[0] |
||||
|
else: |
||||
|
return results |
||||
|
|
||||
|
def _inference_from_text(self, text): |
||||
|
text_features = self.predictor.get_text_latents([text]) |
||||
|
return text_features |
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def _inference_from_image(self, img): |
||||
|
img = to_pil(img) |
||||
|
image_features = self.predictor.get_image_latents([img]) |
||||
|
return image_features |
Loading…
Reference in new issue