ru-clip
copied
wxywb
2 years ago
2 changed files with 143 additions and 1 deletions
@ -1,2 +1,67 @@ |
|||
# ru-clip |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
@register(output_schema=['vec']) |
|||
class Clip(NNOperator): |
|||
""" |
|||
CLIP multi-modal embedding operator |
|||
""" |
|||
def __init__(self, model_name: str, modality: str): |
|||
self.modality = modality |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True) |
|||
self.tokenize = clip.tokenize |
|||
self.tfms = transforms.Compose([ |
|||
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), |
|||
transforms.CenterCrop(224), |
|||
transforms.ToTensor(), |
|||
transforms.Normalize( |
|||
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|||
]) |
|||
|
|||
def inference_single_data(self, data): |
|||
if self.modality == 'image': |
|||
vec = self._inference_from_image(data) |
|||
elif self.modality == 'text': |
|||
vec = self._inference_from_text(data) |
|||
else: |
|||
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|||
return vec.detach().cpu().numpy().flatten() |
|||
|
|||
def __call__(self, data): |
|||
if not isinstance(data, list): |
|||
data = [data] |
|||
else: |
|||
data = data |
|||
results = [] |
|||
for single_data in data: |
|||
result = self.inference_single_data(single_data) |
|||
results.append(result) |
|||
if len(data) == 1: |
|||
return results[0] |
|||
else: |
|||
return results |
|||
|
|||
def _inference_from_text(self, text): |
|||
text = self.tokenize(text).to(self.device) |
|||
text_features = self.model.encode_text(text) |
|||
return text_features |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def _inference_from_image(self, img): |
|||
img = to_pil(img) |
|||
image = self.tfms(img).unsqueeze(0).to(self.device) |
|||
image_features = self.model.encode_image(image) |
|||
return image_features |
|||
|
|||
|
@ -0,0 +1,77 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import sys |
|||
from pathlib import Path |
|||
import torch |
|||
from torchvision import transforms |
|||
|
|||
from towhee.types.image_utils import to_pil |
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee.types.arg import arg, to_image_color |
|||
from towhee import register |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class RuClip(NNOperator): |
|||
""" |
|||
Russian CLIP multi-modal embedding operator |
|||
""" |
|||
def __init__(self, model_name: str, modality: str): |
|||
self.modality = modality |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.model = clip.create_model(model_name=model_name, pretrained=True, jit=True) |
|||
self.tokenize = clip.tokenize |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
|
|||
path = str(Path(__file__).parent) |
|||
sys.path.append(path) |
|||
import ruclip |
|||
sys.path.pop() |
|||
clip, processor = ruclip.load('ruclip-vit-base-patch32-384', device=self.device) |
|||
templates = ['{}', 'это {}', 'на картинке {}', 'это {}, домашнее животное'] |
|||
self.predictor = ruclip.Predictor(clip, processor, device, bs=1, templates=templates) |
|||
|
|||
def inference_single_data(self, data): |
|||
if self.modality == 'image': |
|||
vec = self._inference_from_image(data) |
|||
elif self.modality == 'text': |
|||
vec = self._inference_from_text(data) |
|||
else: |
|||
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|||
return vec.detach().cpu().numpy().flatten() |
|||
|
|||
def __call__(self, data): |
|||
if not isinstance(data, list): |
|||
data = [data] |
|||
else: |
|||
data = data |
|||
results = [] |
|||
for single_data in data: |
|||
result = self.inference_single_data(single_data) |
|||
results.append(result) |
|||
if len(data) == 1: |
|||
return results[0] |
|||
else: |
|||
return results |
|||
|
|||
def _inference_from_text(self, text): |
|||
text_features = self.predictor.get_text_latents([text]) |
|||
return text_features |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def _inference_from_image(self, img): |
|||
img = to_pil(img) |
|||
image_features = self.predictor.get_image_latents([img]) |
|||
return image_features |
Loading…
Reference in new issue